
Collection-Oriented
Scientific

Workflows

for

Integrating and
Analyzing
Biological

Data

CollectionCollection--Oriented Oriented
Scientific Scientific

WorkflowsWorkflows

forfor

Integrating and Integrating and
Analyzing Analyzing
Biological Biological

DataData

UC DAVIS
Department of
Computer Science

Shawn BowersShawn Bowers11

Timothy McPhillipsTimothy McPhillips11

Bertram LudaescherBertram Ludaescher1,21,2

1 1 UC Davis Genome CenterUC Davis Genome Center
2 2 Dept. of Computer ScienceDept. of Computer Science

University of California, DavisUniversity of California, Davis

CollectionCollection--Oriented Scientific Workflows,Oriented Scientific Workflows, Bowers, Bowers, McPhillips, Ludäscher

Cutting to the chase: What are Scientific Workflows?

• Probably the single-most important concept you hear about @DILS’06
• Attempto-Plain-English Definition:

– SWFs := System designs and/or executable programs/scripts
– … aiming to solve complex scientific data integration, analysis,

management, visualization tasks
• in plainer English: doing hard and/or messy stuff …

– … while doing it in a scientist-friendly way
• that is: making it look easy

– … with the ultimate goal to
– … do new, more, and better (e-)Science,
– … faster!

• In short: SWFs are nothing less than MIRACLE-IT® to make scientists
(biologists, physicists, ...) happy.
Bio to CS/IT guy: “Please MIRACLE-IT® !” and “MIRACLE-IT®-Happen-NOW!!”

• Attempto-DL Definition:

CollectionCollection--Oriented Scientific Workflows,Oriented Scientific Workflows, Bowers, Bowers, McPhillips, Ludäscher

Ex: A Happy Fusion Simulation Workflow
Subspecies/Variety: “Plumbing WF” (flux-laboris plumbiensis)
• Implements concurrent analysis pipeline (@2ndary cluster):

Tasks: convert; analyze; copy-to-Web-portal (makes scientists really happy!)
+ easy configuration, reuse, …

+ pipeline parallelism!

Pipelined
Execution

Model

Reusable
Actor

“Class” SpecializeActor
“instances”

SpecializeActor
“instances”

Specialized
Actor

“Instances”

Inline
Documentation

Easy-to-edit
Parameter
Settings

Inline
Display

Checkpointing for
(semi-smart) restart

Overall architecture/simulation (physicist): Scott Klasky (ORNL)
Workflow design & development: Norbert Podhorszki (UC Davis)

CollectionCollection--Oriented Scientific Workflows,Oriented Scientific Workflows, Bowers, Bowers, McPhillips, Ludäscher

Ex: Pipelined workflow for inferring phylogenetic trees

Aligned sequences “token” Phylogenetic tree “token”

A3

A3

CollectionCollection--Oriented Scientific Workflows,Oriented Scientific Workflows, Bowers, Bowers, McPhillips, Ludäscher

What about scripts instead of SWFs?
• Why not just use …

– MIRACLE-Perl®

– or MIRACLE-Python®

– or MIRACLE-BPEL4WS® ???

• Perl/Python in the hand of a gifted (and in the case of Perl: masochistic)
programmer are hard to beat …

• … but (MIRACLE-) Scientific Workflows offer some new features:
– parameter configuration, parameter studies

– actor (component)-oriented workflow design [Bowers-Ludaescher-ER’05]

• component and workflow reuse & repurposing

– semantic extensions (smart search/link/…) [Bowers-Ludaescher-QLQP’06]

– data (and workflow) provenance support ([Altintas-et-al], [McPhillips-et-al]) @ IPAW’06

• explain data dependencies/lineage, debug “strange” results, smart rerun,…

– data-, task-, pipeline-parallelism

– comprehensibility, documentation

• e.g. check out demos by Kepler, Taverna, …

CollectionCollection--Oriented Scientific Workflows,Oriented Scientific Workflows, Bowers, Bowers, McPhillips, Ludäscher

Kepler SWF using remote datasets, 3rd-party software …

Remote data source

res lm(BARO ~ T_AIR)
res
plot(T_AIR, BARO)
abline(res)

R processing script

CollectionCollection--Oriented Scientific Workflows,Oriented Scientific Workflows, Bowers, Bowers, McPhillips, Ludäscher

Managing complexity: Actor-oriented Modeling & Design

Scientific workflows use
hierarchy to hide
complexity:

• Top level workflows can be a
conceptual representation of
the science process that is easy
to comprehend at a glance

• Drilling down into sub-
workflows reveals increasing
levels of detail

• Composing models using
hierarchy promotes the
development of re-usable
components that can be shared
with other scientists

CollectionCollection--Oriented Scientific Workflows,Oriented Scientific Workflows, Bowers, Bowers, McPhillips, Ludäscher

Retrieving gene sequences via web services

Gene sequence returned
in XML format

Web service executes
remotely (e.g., in Japan)

Extracted sequence
can be returned for
further processing

This entire workflow can be
wrapped as a re-usable component
so that the details of extracting
sequence data are hidden unless
needed.

CollectionCollection--Oriented Scientific Workflows,Oriented Scientific Workflows, Bowers, Bowers, McPhillips, Ludäscher

Kepler/SEEK Semantic Extensions

• Employ semantic extensions (ontologies) for ..

– Smart Search (Resource Discovery)
– Smart Attach (Data Binding)
– Smart Integration (Merge Actor)
– Smart Links (Actor Composition)

Search-Attach-Integrate-Link

CollectionCollection--Oriented Scientific Workflows,Oriented Scientific Workflows, Bowers, Bowers, McPhillips, Ludäscher

“Hybrid” Types … Semantic + Structural Typing

Structural Types: Given a structural type language S
– Datasets, inputs, and outputs can be assigned structural types S ∈ S

Semantic Types: Given an ontology language O (e.g., OWL-DL)
– Datasets, inputs, and outputs can be assigned ontology types O ∈ O

SoutS

OoutO O : Observation ⎡⎤
∀obsProperty.SpeciesOccurrence

S : SpeciesData(site, day, spp, occ)

O : Observation ⎡⎤
∀obsProperty.SpeciesOccurrence

S : SpeciesData(site, day, spp, occ)S

O

Sout

Oout

Sin

Oin≤

≤/

Semantically compatible
but structurally incompatibleA1A1 A2A2

Semantic & structural types can be combined using logic constraints

α := (∀site,day,sp,occ) SpeciesData(site, day, sp, occ) →
(∃y) Observation(y), obsProp(y, occ), SpeciesOccurrence(occ)

α := (∀site,day,sp,occ) SpeciesData(site, day, sp, occ) →
(∃y) Observation(y), obsProp(y, occ), SpeciesOccurrence(occ)

CollectionCollection--Oriented Scientific Workflows,Oriented Scientific Workflows, Bowers, Bowers, McPhillips, Ludäscher

Semantic Type Annotation in Kepler

• Component input and
output port annotation
– Each port can be

annotated with multiple
classes from multiple
ontologies

– Annotations are stored
within the component
metadata

CollectionCollection--Oriented Scientific Workflows,Oriented Scientific Workflows, Bowers, Bowers, McPhillips, Ludäscher

Component Annotation and Indexing

• Component Annotations
– New components can be

annotated and indexed into the
component library (e.g.,
specializing generic actors)

– Existing components can also be
revised, annotated, and indexed
(hiding previous versions)

CollectionCollection--Oriented Scientific Workflows,Oriented Scientific Workflows, Bowers, Bowers, McPhillips, Ludäscher

Smart Search

Find a component (here: an actor) in different locations (“categories”)
• … based on the semantic annotation of the component (or its ports)
• … registered to one or more ontologies (controlled vocabularies)

Browse for Components Search for Component Name Search for Category / Keyword

CollectionCollection--Oriented Scientific Workflows,Oriented Scientific Workflows, Bowers, Bowers, McPhillips, Ludäscher

Smart Linking (Workflow Design)

• Navigate errors and
warnings within the
workflow

– Search for and insert
“adapters” to fix
(structural and
semantic) errors …

• Statically perform semantic
and structural type checking

CollectionCollection--Oriented Scientific Workflows,Oriented Scientific Workflows, Bowers, Bowers, McPhillips, Ludäscher

Some KEPLER Actors … (oh, the good old days …)

CollectionCollection--Oriented Scientific Workflows,Oriented Scientific Workflows, Bowers, Bowers, McPhillips, Ludäscher

So ...

• … a question: If scientific workflows are so great, why
haven’t they taken over the world??
– A1: just wait …
– A2: they already have …
– A3: The problem of creating flexible, reusable, comprehensible,

efficient, … workflows
– … is akin to the problem of creating modular, reusable, maintainable,

… software!
– … it’s complex systems engineering (as in: difficult)

• … and using UML, XML, WS-foo, SOA-bar, and BPEL-baz are no
substitute for solving your design problem!

CollectionCollection--Oriented Scientific Workflows,Oriented Scientific Workflows, Bowers, Bowers, McPhillips, Ludäscher

Complexity in Scientific Workflow Design

Custom actors, hand-crafted control flow
limited to sequential execution

(SSDBM’03)

Fault-tolerance control-
flow “wired-in”,

e.g. via Boolean switches,
complex branching and

looping

The use of “control-flow” primitives
– Managing complex, nested data structures (select/filter/transform)
– Fault-tolerance and exception handling
– …

CollectionCollection--Oriented Scientific Workflows,Oriented Scientific Workflows, Bowers, Bowers, McPhillips, Ludäscher

Modeling Control-Flow Constructs in Dataflow

• Dataflow in Kepler
– Based on dataflow process networks (Kahn et al, Lee et al)

– Supports pipeline parallelism (streaming data)
– Natural paradigm for data-driven workflows

– Efficient analysis and scheduling

– Intuitive model for workflow designers

• Control-Flow in Kepler
– Branching via if-then-else and switch-case statements
– Iteration with multiple entry and exit points

– Low-level actors for manipulating structure (e.g., record-to-array)

• Problems modeling Control-Flow directly using Dataflow
– Overly complicated workflows; hard to understand (low-level programming),

maintain, debug, extend limited reusability; complex re-configuration

Dataflow&Ctrl-flow
Marriage!

New Design Primitives (e.g., templates & frames)

F
T

F
2

F
1

[Bowers-et-al, SciFlow’06][Bowers-et-al, SciFlow’06]

Note to self: Check out the new Taverna
control-flow layered architecture !

CollectionCollection--Oriented Scientific Workflows,Oriented Scientific Workflows, Bowers, Bowers, McPhillips, Ludäscher

Scientific Workflow Design: Challenges

“And that’s why our scientific workflows are
much easier to develop, understand and maintain!”

CollectionCollection--Oriented Scientific Workflows,Oriented Scientific Workflows, Bowers, Bowers, McPhillips, Ludäscher

A Simple Motivating Example

• Take the services (actors, components) in (a)
• … and chain them together in a scientist friendly form a la (b)
• … considering the following signatures (cf. Haskell, ML, …)

– (c) BLAST :: DNA [DNA]

– (d) MotifSearch :: DNA [Motif]

– (e) BLAST o MotifSearch = \x. BLAST(MotifSearch)(x)

• … oops: (e) is not type correct: note the signatures of (c) and (d)!
• a neat solution: implicit or explicit iteration / map(f)[x1,…,xn]

– cf. Kepler and Taverna, Kepler solutions

CollectionCollection--Oriented Scientific Workflows,Oriented Scientific Workflows, Bowers, Bowers, McPhillips, Ludäscher

Extended Example: Workflow Evolution

• (a) => (b): replace A::a b with A’::a [b]
– need to call B iteratively i.e. wrap B inside a component or add control-flow

• (b) => (c): upstream produces [a], [a], … instead of a, a, …
• (d): need to “bypass” data components since B can’t handle ds
• This gets messy quickly …

CollectionCollection--Oriented Scientific Workflows,Oriented Scientific Workflows, Bowers, Bowers, McPhillips, Ludäscher

A Realistic Example (ChIP-chip workflow)

CollectionCollection--Oriented Scientific Workflows,Oriented Scientific Workflows, Bowers, Bowers, McPhillips, Ludäscher

So how to get from messy to clean & reusable designs?

before…

AFTER!

CollectionCollection--Oriented Scientific Workflows,Oriented Scientific Workflows, Bowers, Bowers, McPhillips, Ludäscher

Answer: Collection-Oriented Modeling & Design

Multi-level Pipeline Parallelism!

• Collection-Oriented Modeling & Design (COMAD)
– starting point: dataflow / actor-oriented modeling & design
– embrace the assembly line metaphor fully

Flow-based Programming (J. Morrison)
– data = tagged nested collections

• e.g. represented as flattened, pipelined
(XML) token streams:

CollectionCollection--Oriented Scientific Workflows,Oriented Scientific Workflows, Bowers, Bowers, McPhillips, Ludäscher

Multi-level Pipeline Parallelism

Actor 5 processes
one data token at
a time.

Actor 4 processes
entire collections
(of a particular type)
at one time.

Actors 4 and 5 are processing
contents of collection a concurrently

McPhillips,T., Bowers, S., An Approach for Pipelining Nested
Collections in Scientific Workflows. SIGMOD Record, 34(3), 2005.

McPhillips,T., Bowers, S., An Approach for Pipelining Nested
Collections in Scientific Workflows. SIGMOD Record, 34(3), 2005.

Opening
delimiter for
top-level
collection c

Closing
delimiter for
top-level
collection c

Metadata for
collection b

CollectionCollection--Oriented Scientific Workflows,Oriented Scientific Workflows, Bowers, Bowers, McPhillips, Ludäscher

How does COMAD work?
• Some COMAD principles:

– data = tagged, flattened, nested collections (token
streams)

• data tokens
• metadata tokens

– inherited downwards into (sub)collections
– define an actor’s read scope via an (X)Path-like

expression:
• default actor behavior:

– not mine?
don’t do anything: just pass the buck!

– stuff within my scope?
» add-only to it (default)
» consume scope; write-out result
(but remember the bypass!)

– iteration scope is a query involving group-by and
further refines the granularity/subtrees that constitute
the tokens consumed by an actor firing

– has aspects of implicit iteration (a la Taverna)
• default iteration level to fix signature mismatches

– but also:
• granularity/grouping is definable
• works on “anything” (assuming scope is

matched correctly)
• add-only and replace modes

CollectionCollection--Oriented Scientific Workflows,Oriented Scientific Workflows, Bowers, Bowers, McPhillips, Ludäscher

Read Scoping with Collection Schemas (Types)

Collection schema

(defining a query pattern)
… and a sample matching instance

CollectionCollection--Oriented Scientific Workflows,Oriented Scientific Workflows, Bowers, Bowers, McPhillips, Ludäscher

Iteration Scoping via Queries

• ingredients / related:
– tree pattern queries / XML selection queries
– … with group-by (here “group-by $c, $v”)
– see also: list comprehensions as queries (cf. CPL/Biokleisli)

CollectionCollection--Oriented Scientific Workflows,Oriented Scientific Workflows, Bowers, Bowers, McPhillips, Ludäscher

COMAD: What we gained

• from fragile, messy workflow designs
• … to more reusable actors

– just change the scopes
– sometimes not even that is needed

• … and cleaner workflow design
• Crux: keep the nesting structure of data (pass through, add-only)
• … and let it drive the (semi-)implicit iteration

CollectionCollection--Oriented Scientific Workflows,Oriented Scientific Workflows, Bowers, Bowers, McPhillips, Ludäscher

Summary: Collection-Oriented WF Modeling & Design

• Assembly line metaphor:
Dataflow
+ XML …
– Streams are nested

collections (≈ XML)
– Less “messy” WFs (more

linear, less branching)
– Pipelined parallelism

(stream lists)

CollectionCollection--Oriented Scientific Workflows,Oriented Scientific Workflows, Bowers, Bowers, McPhillips, Ludäscher

Acknowledgements and Q&A …

• NSF/ITR Science Environment for Ecological Knowledge
(SEEK)

• NSF/ITR Geosciences Network (GEON)
• DOE/SciDAC Scientific Data Management Center (SDM)
• U.S. Dept. of Energy, LLNL

