
On Querying OBO Ontologies using a
DAG Pattern Query Language

Amarnath Gupta
Simone Santini

Univ. of California San Diego

What is an OBO Ontology?

OBO – Open Biomedical Ontologies is a
consortium

Serves a standard for developing Gene-
Ontology-like ontologies (despite subtle
differences)
Maintains a repository of biomedical
ontologies that have this structure
Many members of the repository are on
related (or relatable) areas

Other Elements of an OBO
Specification
An OBO Ontology may specify

A set of type names through a typedef declaration
A set of subset names through a subsetdef declaration

Each term can also specify
relationship: a typed relationship between this term and
another term. The value of this tag should be the relationship
type id, and then the id of the target term.
domain, range: the children (parents) that can be assigned to
relationships with this type. If the domain is set, term
relationships with this type may only have children (parents)
that are the same as, or subclasses of, the domain term
is_transitive, is_symmetric, is_cyclic: descriptors of
relationships.

An example snippet from an
OBO Ontology

[Term]
id: GO:0003674
name: molecular_function
def: "The action characteristic of a gene product." [GO:curators]
subset: goslim

[Term]
id: GO:0016209
name: antioxidant activity
is_a: GO:0003674
def: "Inhibition of the reactions brought about by dioxygen or peroxides. …"
[ISBN:0198506732]

[Term]
id: GO:0045174
name: glutathione dehydrogenase (ascorbate) activity
xref_analog: EC:1.8.5.1 ""
def: "Catalysis of the reaction…" [EC:1.8.5.1]
synonym: dehydroascorbate reductase []
is_a: GO:0009055 \ is_a: GO:0015038 \ is_a: GO:0016672

Our Current Abstraction
Consider a database where

the data is a set of elements,
each element is structured like an unranked directed acyclic
graph

The nodes of the DAG have properties represented as
attribute-value pairs
The edges of the DAG

are binary
have no labels*
are unordered

How should we store data, formulate queries
and retrieve information from such a database?

Why this DAG Abstraction?
A lot of data in the world are DAG-structured

Many ontologies
Classification systems with multiple inheritance
Phylogenetic networks that consider speciation,
hybridization and lateral gene transfer [Moret 2004]

Tree databases are currently a strong research
focus

DAGs form the next level in structural complexity and
hence the next frontier to be conquered
Some theory and techniques from tree database
research can be extended to DAGs

Desiderata for Querying DAGs
Queries should

permit standard value-based queries on node content
Allow the special case where edges have their own content

support pattern queries
return subgraphs (witness graphs) that match the
conditions in the query

support construction of result graphs by composing
partial results of subqueries
support structure-aggregate queries that compute
structural summaries of witness graphs

Combine both value-based queries and composable, structure-based queries

An Example

Toward a Query Language for
DAG databases

Pattern Queries
What is a pattern query?

Given a “pattern graph” H and a “data graph” G
α is a mapping from nodes of H to the nodes of G such that

for every node ni of H, α(ni) in G are the nodes that satisfy a predicate p(ni)

μ is a mapping from edges of H to paths G such that
for every edge ei (nk, nl) of H, there is a path from α(nk) to α(nl) in G such that
the path satisfies some predicate p’(ei)

p’’ is a predicate on the homeomorphic image of H on G

A pattern query language specifies such predicates and mappings

The result of a query is the set of subgraphs in G that satisfies both
these mappings

Typically, the vocabulary for predicates p’ is restricted

No constraint on node or edge disjointedness

L(Π), The Pattern Language

Patterns with Variables
The pattern (v = 1)[−(v = 2)]*−(v = 1) matches the
graphs
[1, 1] → [3, 2] → [7, 1] , [1, 1] → [3, 2] → [2, 1] , [1, 1] →
[3, 2] → [4, 2] → [8, 1] , and so on.

Adding variables y : (v = 1)[−(v = 2)]* − x : (v = 1)
the pattern will produce the set of pairs (y, x): {
([1, 1], [2, 1]), ([1, 1], [7, 1]), ([1, 1], [8, 1]), ([2, 1], [8, 1])}

Now consider the pattern query:
∪[{x − y|g y : (v = 1)[−(v = 2)]*−x : (v = 1) ← G1}]
Result:
{[2, 1] → [1, 1], [7, 1] → [1, 1], [8, 1] → [1, 1], [8, 1] →
[2, 1]}

node-id

attribute v

Variables can be nodes or subgraphs

An Aside: Monoids

Embedding Π in Monoid
Comprehension

Monoid comprehension
An expression of the form ω{e|q1,…,qn} where

qi may have one of the following forms
qi ≡ xi ← A, where A is a constant or another monoid
comprehension
qi ≡ g π(y1,…,ym), where

y’s are the free variables of pattern π
g is the collection of variables and constants collected
from prior environments of computation (q’s)

qi ≡ P(y1,…,ym), where
P is a predicate
y’s are the free variables of prior environments

monoid generators

Graph Monoids
In addition to standard monoids, ω could be
graph monoids

merge (g1, g2) – union the nodes and edges of the
two graphs, fusing nodes that are equivalent
gmin(g1, g2) – the largest common graph contained
in g1, g2

gmax(g1, g2) – the smallest graph g for which g1, g2
⊂ g

gmax [{x − y|g y : (v = 1)[−(v = 2)]*−x : (v = 1)}]

{[2, 1] → [1, 1], [7, 1] → [1, 1], [8, 1] →
[1, 1], [8, 1] → [2, 1]}

Example Queries
1. Which biosynthesis processes under lipid biosynthesis are also
classified as amine biosynthesis? (Q1)

2. How does phosphatidylethanolamine biosynthesis (phos biosyn in
Fig. 1) derive from cellular metabolism (cell met)? (Q2)

3. Is there a case where a xenobiotic process (e.g., xen met) is a
subprocess of at least two forms of cellular metabolism? (Q3)

4. construct a reduced data graph by deleting all metabolism nodes
except met, and connecting the non-deleted parent(s) of a deleted
node n to its non-deleted children. (Q4)

An Algebra for DAGs

4 classes of algebraic operators
Pattern matching

select, path, match, …

Monoid manipulation
merge, g_union, g_intersect, …

Functional
apply, chain, …

Construction
insert_node, insert_edge, tuple_constructor …

Additional functions like aggregates
diameter, size, lca…

Chen et al: VLDB
2005

A Core Algebra

From Pattern to Algebraic Plan

Preliminaries
What is a plan?

An assignment of bound query variables to a structure
that holds the pattern instance and the corresponding
variables (called the environment)
a function call plan(π,g,U)

Where g is the input graph and U is the environment

A simple example
Evaluating a single condition C
plan(z:C, g, e) =

u1 = (g, C);
e = apply[set](u1,

fun x => (z x)
) Assign to z the value x

The Translation Algorithm - I
Consider the following pattern

y : (C1[−t]*C2[−t](5, 7) − x : (C3[−C4 − C5]*−C6) − C7)

Step 1 – Normalize the expression
Break out the internal variables

y=C1[−t]*C2[−t](5, 7) − x − C7
x = C3[−C4 − C5]*−C6

Replace [-t]* and [t-]* by path symbols #, − or (a,b)
y=C1#C2(5, 7) − x − C7
x = C3[−C4 − C5]*−C6

Expand the * element
y=C1#C2(5, 7) − x − C7
x = C3−v*−C6

v = (C4 − C5)

The Translation Algorithm - II
Step 2 – eliminate the repeated pattern[-π](n,m)
by recursively calling plan

For a path pattern the fragment would be:
plan(x1 : (C4 − C5), g, u1);
u2 = apply[set](u1

fun x2 => u1(x2) (Transform the set of environments into a
set of graphs)

);
p45 = chain(g, u2, n, m);

Now the partially executed state looks like:
y=C1#C2(5, 7) − x − C7
x = C3 − p45 −C6

The Translation Algorithm - III
Step 3 – replace C’s with node sets they
evaluate to

U1 = σ(g,C1)
…

Step 4 – replace path symbols by set of
paths

p12 = apply[set](U1, fun x => apply[set](U2, fun y => path(x, y, 0, infty))
p23 = apply[set](U2, fun x => apply[set](U3, fun y => path(x, y, 5, 7))
p34 = apply[set](U3, fun x => apply[set](U4, fun y => path(x, y, 1, 1))
…

Now the state looks like
y=p12 ~ p23 ~ x ~ p67

x = p34 ~ p45 ~ p56

The Translation Algorithm - IV
Step 5 – replace path-valued variables by
merging constituent paths

p36 = apply[set](p34, fun x34 =>
apply[set](p45, fun x45 =>

apply[set](p56, fun x56 => merge(x34, merge(x45, x56)))
)

)
Enter p36 in the variable table for x
Our example

Perform p12 ~ p23 ~ p36 ~ p67 and then derive p17

Step 6 – construct the environment
U = apply[set](p17, fun x17 =>

apply[set](p36, fun x36 => (x x36) ⊕ (y x17)
);

Tupling operator

Rewriting for Optimization

Substitute the pattern
{select-block} {graph-retrieval-block} by
{select-block}{match-operation}{graph-retrieval-
block}

match – given graph g and pattern π(y)
where y is the set of free variables of π, and
N, a candidate node-set for y, it returns a
relation of bindings

Some Broad Comparisons
How does this relate to XML query languages?

XML doesn’t exactly apply because concepts like child ordering
and document ordering are not relevant in our system
If our DAGs were trees, it can be proven that the expressive
power of DQL (minus the construction part) will be equivalent
to conditional XPath (Marx 2004)

How about other semistructured languages like Lorel,
UnQL and Strudel?

Most semistructured languages that support pattern queries are
not based on monoid comprehension (exception: Fegaras and
Maier)
DQL expressions more complex patterns
Lorel, UnQL does not support constructions
Strudel is the closest

Are biologists buying this?
Our use cases are always driven by domain
scientists’ analysis needs
Current use cases

Neuroscience: The Ontology Task Force for BIRN
Developing searchable lexicons and ontologies that are to
be used for data integration called BIRNLex and MIND

Using ontologies like RO, FuGO, PATO,… and non-ontologies
like UMLS in the process

Systems Biology
Extending SBML models with ontological references
Yeast classification database for MIPS
GO, of course

Biodiversity
Habitat classification

Conclusions and Future Work
Conclusions

A simplified abstraction over ontology graphs
Useful for practical biological (and other) information exploration
Used in a system called Biological Networks [Baitaluk et al: BMC
Bioinformatics 2006, Baitaluk et al: NAR 2006]
Being implemented in a system called OntoQuest [Chen et al:
VLDB 2006]

Future Work
Complete the calculus and algebra and the query processor
“Inferencing” aspects of ontologies
Extending the language to admit edge weights
Supporting “link analysis” type queries where path ranking and
path strength are used
Extending to more general graphs

Acknowledgments
BIRN OTF

Maryann Martone, UCSD
Christine Fenema Notestein,
UCSD
William Bug, Drexel U.
Jessica Turner, UCI
Carol Bean, NIH
Daniel Rubin, Stanford

Computer Science
Li Chen, UCSD
M. Erdem Kurul, Microsoft

Systems Biology
Animesh Ray, KGI
Michael Baitaluk, UCSD

Biodiversity
Karen Stocks, UCSD
NatureServe Team

	On Querying OBO Ontologies using a�DAG Pattern Query Language
	What is an OBO Ontology?
	Other Elements of an OBO Specification
	An example snippet from an OBO Ontology
	Our Current Abstraction
	Why this DAG Abstraction?
	Desiderata for Querying DAGs
	An Example
	Toward a Query Language for DAG databases
	Pattern Queries
	L(P), The Pattern Language
	Patterns with Variables
	An Aside: Monoids
	Embedding P in Monoid Comprehension
	Graph Monoids
	Example Queries
	An Algebra for DAGs
	A Core Algebra
	From Pattern to Algebraic Plan
	Preliminaries
	The Translation Algorithm - I
	The Translation Algorithm - II
	The Translation Algorithm - III
	The Translation Algorithm - IV
	Rewriting for Optimization
	Some Broad Comparisons
	Some Broad Comparisons
	Implementation Status
	Are biologists buying this?
	Conclusions and Future Work
	Acknowledgments

