Maschinelle Sprachverarbeitung

Assignment 4: Rule-Based Dictionary gene NER
Assignment

• Perform dictionary-based gene named entity recognition
• Input
 – Training corpus (with gene names tagged) and a test corpus (only text, no annotations)
 • IOB format
 • All multi-token entities have been removed
 – Dictionary (processing is allowed)
• Output: Annotated test corpus
• You must not apply ML (SVM, HMM, CRF, …)
• Feel free to use a IE-framework
 – Or write your own fuzzy dictionary matching algorithm
We Provide

- “dictionary_genenames.txt”: ~100,000 human gene names
 - Excerpt from Entrez Gene, all single token
 - All lower case, no duplicates
- “english_stop_words.txt” ~500 stop words
- “training_annotated.iob”: A gold standard corpus
 - Only in B-Protein (single token)
- “test_no_annotation.iob”: Evaluation texts
 - Only B-Protein (single token)
- “eval.scala”: Evaluation script
 - Run with
 <scala eval.scala goldstandard.iob predict.iob>
Your Task: Tag all genes in the test corpus

- Only rule-based / dictionary methods allowed
 - Edit-distance matching, n-gram overlap, stemming, regex, …
 - No classification: CRF, HMM, SVM, Naïve Bayes, …
- Rules may be derived from the training data
 - OK: Count POS-n-Grams around matches and turn into rule
 - Not OK: Count POS-n-Grams and turn frequencies into features
- If you want to do something fancy, ask for approval first
- Test method using our evaluation script on the test data
- May use IE-framework: LingPipe, OpenNLP, NLTK, GATE
 - Process the corpus: Load corpus and remove stop words
 - Tag all occurrences of terms from the gene list [in the corpus]
 - Do whatever is necessary with the tool you have chosen
Example

<table>
<thead>
<tr>
<th>Number</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>of</td>
<td>0</td>
</tr>
<tr>
<td>glucocorticoid receptors</td>
<td>B-protein</td>
</tr>
<tr>
<td>in</td>
<td>0</td>
</tr>
<tr>
<td>lymphocytes</td>
<td>0</td>
</tr>
<tr>
<td>and</td>
<td>0</td>
</tr>
<tr>
<td>their</td>
<td>0</td>
</tr>
<tr>
<td>sensitivity</td>
<td>0</td>
</tr>
<tr>
<td>to</td>
<td>0</td>
</tr>
<tr>
<td>hormone action</td>
<td>0</td>
</tr>
<tr>
<td>.</td>
<td>0</td>
</tr>
</tbody>
</table>

The study demonstrated a
Competition

• Best F-measure on strict comparison wins
 - See evaluation script
 - scala eval.scala goldstandard.iob goldstandard.predict
 • Precision: 0.40
 • Recall: 0.44
 • F1 Score: 0.42
Submission by Mail to Ulf Leser

• Results due on 24.1.2016
• Must run on gruenau2
• Performance (F1) must be better than 35% on test data
• Submit one JAR file called groupX.jar
 – java -jar groupX.jar test_file_name new_file
 – new_file is the IOB-tagged version of test_file_name
 – Include source code and results of evaluation on training data
 • Use our evaluation script
 • Precision, Recall, F1