Datenbanksysteme II:
Hashing

Ulf Leser
Content of this Lecture

- Hashing
- Extensible Hashing
- Linear Hashing
Sorting or Hashing

- Sorted or indexed files
 - Typically \(\log(n) \) IO for searching / deletions
 - Overhead for keeping order in file or in index
 - Low overhead (overflows) brings danger of degradation
 - Multiple orders require multiple indexes - multiple overhead
 - Good support for range queries

- Can we do better ... on average? ... under certain circumstances?

- Hash files
 - Can provide access in 1 IO
 - Support searching for multiple attributes (with some overhead)
 - Require notable overhead if table size changes considerably
 - Are bad at range queries
Hash Files

- Set of buckets (≥ 1 blocks) B_0, \ldots, B_{m-1}, $m > 1$
- Hash function $h(K) = \{0, \ldots, m-1\}$ on a set K of values
- Hash table H (bucket directory) of size m with ptrs to B_i's
- Hash files are structured according to one attribute only
Example

• Hash function on Name

\[h(\text{Name}) = \begin{cases}
0 & \text{if last character} \leq M \\
1 & \text{if last character} \geq N
\end{cases} \]

Why last char?

Bucket 0

- Bond
- George
- Victoria

Bucket 1

- Adams
- Carter
- Truman
- Wilson
- Washington

Search “Adams”
1. \(h(\text{Adams}) = 1 \)
2. Bucket 1, Block 0?
 - Success

Search “Wilson”
1. \(h(\text{Wilson}) = 1 \)
2. Bucket 1, Block 0?
 - Bucket 1, Block 1?
 - Success

Search “Elisabeth”
1. \(h(\text{Elisabeth}) = 0 \)
2. Bucket 0, Block 0?
 - Failure
Efficiency of Hashing

• Given: \(n \) records, \(R \) records per block, \(m \) buckets
• Assume hash table is in main memory
• Average number of blocks per bucket: \(n / (m \times R) \)
 - Assuming a (perfect) uniformly distributing hash function
• Search
 - \(n / (m \times R) / 2 \) for successful search
 - \(n / (m \times R) \) for unsuccessful search
• Insert
 - \(n / (m \times R) \) if end of bucket cannot be accessed directly
 - \(n / (2m \times R) \) if free space in one of the bucket
• If \(|H| = m \) large enough and good hash function: 1 I/O
Problems with Hashing

- Hashing may degrade to sequential scans (heap file)
 - If number of buckets static and too small
 - If hash function produces large skew
- Extending hash range requires complete rehashing
 - But fine-grained hashing require many buckets from the start
- Hash Function
 - Examples: Modulo Function, Bit-Shifting
 - Desirable: uniform mapping of hash keys onto m
 - “Ideal” (i.e. uniform) mapping possible if data distribution and number of records are known in advance – which is unusual
 - Often, application-independent hash functions are used
 - Incorporating knowledge on expected distribution of keys
Content of this Lecture

• Hashing
• Extensible Hashing
• Linear Hashing
Extensible Hashing

• Hashing as described is a static index structure
 - Structure (buckets, hash function) is fixed once and never changed
• Better: Hash function should automatically adapt to size of data set and to distribution of values

• Principle idea
 - Hash function generates (long) bitstring
 • Should distribute values evenly on every position of bitstring
 - Use growing prefix of this bitstring as index in hash table
 - Size of prefix adapts to number of records
Hash functions

- \(h: K \rightarrow \{0,1\}^* \)
- Size of bitstring should be long enough for mapping into as many buckets as \textit{maximally desired}.
 - Though we do not use them all most of the time.
- Example: inverse person IDs
 - \(h(004) = 001000000... \quad (4=0..0100) \)
 - \(h(006) = 011000000... \quad (6=0..0110) \)
 - \(h(007) = 111000000... \quad (7 =0..0111) \)
 - \(h(013) = 101100000... \quad (13 =0..01101) \)
 - \(h(018) = 010010000... \quad (18 =0..010010) \)
 - \(h(032) = 000001000... \quad (32 =0..0100000) \)
 - \(H(048) = 000011000... \quad (48 =0..0110000) \)
Example

- **Parameters**
 - d: global „depth“ of hash table, *size of longest prefix currently used*
 - t: local „depth“ of each bucket, *size of prefix used in this bucket*

- **Example**
 - Let a bucket store two records
 - Start with two buckets and 1 bit for identification (d=t₁=t₂=1)

<table>
<thead>
<tr>
<th>Keys</th>
<th>as bitstring</th>
<th>inverse</th>
<th>(h_{d=1}(k))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2125</td>
<td>100001001101</td>
<td>101100100001</td>
<td>1</td>
</tr>
<tr>
<td>2126</td>
<td>100001001110</td>
<td>011100100001</td>
<td>0</td>
</tr>
<tr>
<td>2127</td>
<td>100001001111</td>
<td>111100100001</td>
<td>1</td>
</tr>
</tbody>
</table>

0

1

\((2126, \text{’Russel’}, \text{’C4’}, 232) \)

\((2125, \text{’Sokrates’}, \text{’C4’}, 226) \)

\((2127, \text{’Kopernikus’}, \text{’C3’}, 310) \)
Example cont’d

- New record with $x=2129$
- Bucket for "1" full
- Needs to be split
- Double hash table, $d++$
- Pointers to non-splitting blocks remain unchanged
- Block is split and records are distributed according to bits until new d

<table>
<thead>
<tr>
<th>k</th>
<th>as bitstring</th>
<th>inverse</th>
<th>$h_{d=1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2125</td>
<td>100001001101</td>
<td>101100100001</td>
<td>1</td>
</tr>
<tr>
<td>2126</td>
<td>100001001110</td>
<td>011100100001</td>
<td>0</td>
</tr>
<tr>
<td>2127</td>
<td>100001001111</td>
<td>111100100001</td>
<td>1</td>
</tr>
<tr>
<td>2129</td>
<td>100001010001</td>
<td>100010100001</td>
<td>1</td>
</tr>
</tbody>
</table>
More Complex Example

- Assume reversed bit hash function on integers
- Currently four buckets in use
- Global depth \(d = 3 \)
- Local depth \(t \) between 1 and 3
- Size of global directory: \(2^d = 8 \)
Example: Hash Table
Inserting Values

Current content
40 = 101000
32 = 100000
18 = 010010
13 = 001101
12 = 001100
7 = 000111
6 = 000110
4 = 000100

000: 32, 40; t=3
001: 4, 12; t=3
01: 6, 18; t=2

INSERT(28)
- 28 = 011100
- h(28) = 001110

Overflow

7, 13; t=1

d = t;
Splitting Deep Buckets

- $h(12) = 001100$
- $h(4) = 001000$
- $h(28) = 001110$

- $12, 28; t=4$
- $32, 40; t=3$
- $4; t=4$
- $6, 18; t=2$
- $7, 13; t=1$
Next Insert

INSERT(5)
- $5 = 000101$
- $h(5) = 101000$

Overflow but no dir duplication

$d \neq t$: Overflow but no dir duplication
Splitting Shallow Buckets

• Assume we split overflowed bucket B
• All records $r \in B$, $h(r)$ has the same length-t prefix
• If we split at next position ($t++$)
 - Generate new bucket and rehash records
 - This might generate empty buckets
 - Other bucket might still be overflowed – repeat split
 • In the example, we rehash $5=101000$, $7=111000$, $13=101100$
 • Hence, one split suffices (with block prefixes 101 and 111)
 • But, if we had $5=10100$, $13=101100$, $21=101010$?
• Might even force a deep split with increase in d
• Suboptimal space usage
Summary

• Advantages
 - Partly adapts to growing or shrinking number of records
 - No rehashing of the entire table
 - Essentially no limit in number of records
 - Very fast if directory can be cached and h is well chosen

• Disadvantages
 - Directory needs to be maintained - requires LOG/REDO information, locking in split operations, storage, etc.
 - No adaptation of bucket fill degree - many buckets might be almost empty, few almost full
 - Directory doubling is a “unforeseen” costly operation
 • Everything smooth for a long time, suddenly one operation takes ages
 - Values are not sorted, no range queries
Content of this Lecture

- Hashing
- Extensible Hashing
- Linear Hashing
Linear Hashing

• Similar scheme as in extensible hashing, but
 - Don’t double directory on overflow, but increase one-by-one
 - Guaranteed lower bound on bucket fill-degree
 - Tolerate some overflow blocks in buckets
 • Hopefully few on average, if hash function spreads evenly
Overview

- h generates bitstring of length x, read right to left
- Parameters
 - i: Current number of bits from x used
 - As i grows, more bits are considered
 - If h generates x bits, we use $a_1a_2...a_i$ for the last i bits of $h(k)$
 - n: Total number of buckets currently used
 - Only the first n values of bitstrings of length i have their own buckets
 - Sometimes, i must be increased - later
 - r: Total number of records
- Fix threshold t - linear hashing guarantees that $r/n < t$
 - As r increases, we sometimes increase n such that always $r/n < t$
 - Linear hashing guarantees average fill-degree
 - But does not prevent chaining in case of “bad” hash function

<table>
<thead>
<tr>
<th>011101010110</th>
</tr>
</thead>
<tbody>
<tr>
<td>grows</td>
</tr>
<tr>
<td>i</td>
</tr>
<tr>
<td>x</td>
</tr>
<tr>
<td>22</td>
</tr>
</tbody>
</table>
Insert(k): First Action

- **Insert k**
 - Let m by the integer value encoded by the i last bits of h(k)
 - If m < n
 - Store k in bucket m, potentially using overflow blocks
 - Obviously, we store k in a bucket that does exist
 - If m ≥ n
 - Bucket m does not exist
 - There exist buckets 0 … n-1
 - We redirect k in a bucket that does exist
 - Flip i-th bit (from the right) of m to 0 and store k in this bucket
 - Algorithm ensures that here the i’th (highest) bit must be 1
 - This flipping also needs to be done when searching keys
Insert(k): Second Action

• **Check threshold**: if \(r/n \geq t \), then
 - If \(n = 2^i \)
 • No more room to add another bucket
 • Set \(i++ \)
 • This is only a *conceptual increase* - no physical action
 • Proceed (now \(n < 2^i \))
 - If \(n < 2^i \)
 • There is still/now *room on our address space*
 • We add \((n+1)\)th bucket and set \(n++ \)
 • We need to choose *which bucket to split*
 - We do not split the bucket where we just inserted (why should we?)
 - We do not search for overflowed buckets (too costly)
 - Instead, we follow a cyclic scheme
Which Bucket to Split

• We split **buckets in fixed, cyclic order**
• Split bucket with number $n-2^{i-1}$
 - As n increases, this **pointer cycles through all buckets**
 - Let $n=1a_2a_3...a_i$; then we split block $a_2a_3...a_i$ into $0a_2a_3...a_i$ and $1a_2a_3...a_i$
 • Requires redistribution of bucket with key $a_2a_3...a_i$
 • This is one of the buckets where we had put redirected records with $h(k)>n$
 • This is **not necessarily an overflowed bucket**
 • Only total fill degree is guaranteed
Buckets are Split in Fixed Order

Assume we would split after every insert

<table>
<thead>
<tr>
<th>i</th>
<th>n</th>
<th>Existing buckets</th>
<th>Bucket to split</th>
<th>Generates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2=10</td>
<td>0,1</td>
<td>0</td>
<td>00, 10</td>
</tr>
<tr>
<td>2</td>
<td>3=11</td>
<td>00,10</td>
<td>1</td>
<td>01, 11</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>00,10 01,11</td>
<td>00</td>
<td>000, 100</td>
</tr>
<tr>
<td>3</td>
<td>5=101</td>
<td>000,100 10, 01,11</td>
<td>01</td>
<td>001, 101</td>
</tr>
<tr>
<td>6</td>
<td>110</td>
<td>000,100 001,101 10,11</td>
<td>10</td>
<td>010, 110</td>
</tr>
<tr>
<td>7</td>
<td>111</td>
<td>000,100,001,101, 010,110, 11</td>
<td>11</td>
<td>011, 111</td>
</tr>
</tbody>
</table>
Example

- Assume 2 records in one block, \(x=4 \), \(t=1.49 \), \(i=1 \)

Start

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td>1010</td>
</tr>
<tr>
<td>1</td>
<td>1111</td>
<td></td>
</tr>
</tbody>
</table>

1a) Insert 0101
\(m=1 < n=10_b \)
Insert into bucket 1
But now \(r/n > t \)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td>1010</td>
</tr>
<tr>
<td>1</td>
<td>1111</td>
<td>0101</td>
</tr>
</tbody>
</table>

1b) Since \(n=2^i=2=10_b \)
We need more address space
Increase \(i \) (virtually)
Add bucket number \(2=10_b \)
n=10_b=1a_1: Split bucket 0 into 10 and 00

Split
Yet unsplit
Split

\(n+1 \)
Example 2

2) Insert 0001
 m=1, bucket exists
 Insert into m
 Requires **overflow block**
 (We skip the necessary split)

```
00 0000
01 1111 0001
10 1010
```

3a) Insert 0111
 m=3=n=11b
 Bucket doesn’t exist
 Flip and redirect to 01

```
00 0000
01 1111 0001
01 1111 1010 0111
10 1010
```

3b) r/n=6/3>t – We split
 n<4, so no need to increase i
 Add bucket number 3=11b
 Since n=3=11b, with split 01
 Delete overflow block

```
00 0000
01 1111 0001
01 0001 0101
10 1010
11 1111 0111
```
Example 3

4a) Insert 0011
 \(m = 3 = 11_b < n = 4 = 100_b \)
 Insert into \(11_b \)

\[
\begin{array}{|c|c|}
\hline
00 & 0000 \\
\hline
01 & 0001 \\
& 0101 \\
\hline
10 & 1010 \\
\hline
11 & 1111 \\
& 0111 \\
\hline
\end{array}
\]

4b) We must split again
 Since \(n = 2^i \), increase \(i \)
 Nothing to do physically
 ("Think" a leading 0)
Example 4

4c) Split
Add block number $4 = 100_b$
Split 000_b into 000_b and 100_b

<table>
<thead>
<tr>
<th>000</th>
<th>0000</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>0001</td>
</tr>
<tr>
<td></td>
<td>0101</td>
</tr>
<tr>
<td>010</td>
<td>1010</td>
</tr>
<tr>
<td>011</td>
<td>1111</td>
</tr>
<tr>
<td></td>
<td>0111</td>
</tr>
<tr>
<td>100</td>
<td>-</td>
</tr>
</tbody>
</table>

We keep the average bucket filling
But we have unevenly filled buckets – some empty, some overflow
Observations

• Due to the extension mechanism: $2^{i-1} \leq n < 2^i$
 - Whenever n reaches 2^i, i is increased \Rightarrow 2^i doubles and $n=2^i/2$ (for the new i)
 - n as binary number always has the form $1b_1b_2...b_{i-1}$

• As defined: $m<2^i$
 - But possibly: $m>n$
 • If we drop the leading 1 in m, we get $m_{\text{new}}<m/2$
 • Since $n>2^{i-1}$, $m_{\text{new}} \leq n$
 • Thus, the chosen bucket must already exist
 • We don’t know when it will be split
Summary

- **Advantages**
 - Adapts to varying number of records
 - *Slower growth* and on average better space usage compared to extensible hashing
 - If buckets are sequential on disk, we **don’t need a directory**
 - Compute m: look in m’th block (possible after flipping)

- **Disadvantages**
 - Can degrade, as buckets are split in fixed order
 - No adaptation to skewed value distribution