

Louchka Popova-Zeugmann
Humboldt-Universität zu Berlin Institut of Computer Science Unter den Linden 6, 10099 Berlin, Germany

IFORS 2005, Hawaii
July 11-15, 2005

Definitions Main Property
 Main Property Applications Conclusion
 Applications Conclusion

Outline

Definitions
Petri Net
Time Petri Net
Main Property
State Space Reduction
Dynamic Programming
Applications
Reachability Graph
Time Paths in bounded TPNs
Conclusion

Petri Net \begin{tabular}{c}
Definitions

Main Propery

Applications

Conclusion

\quad

Petri Net

Time Petri Net

\hline
\end{tabular}

Example

- $m_{0}=(0,1,1)$
- $V: F \longrightarrow \mathbb{N}^{+}$(weights of edges)
- $m_{0}: P \longrightarrow \mathbb{N}$ (initial marking)
he structure $N=\left(P, T, F, V, m_{0}\right)$ is a Petri Net (PN), iff
- P, T and F are finite sets,

P -set of places
\} set of vertices(nodes) $P \cap T=\emptyset, \quad P \cup T \neq \emptyset$,
F - set of edges (arcs)
$F \subseteq(P \times T) \cup(T \times P)$ and $\operatorname{dom}(F) \cup \operatorname{cod}(F)=P \cup T$

	Louchka Popova-Zeugmann	TPN State Space Reduction Using DP and Time Paths
	$\begin{gathered} \text { Definitions } \\ \text { Manin Propery } \\ \text { Applictions } \\ \text { Conclusion } \end{gathered}$	Petri Net Time Petri Ne
Time Petri Net		

- $m_{0}=(0,1,1) \quad p$-marking
- $h_{0}=(\sharp, 0,0,0) \quad t$-marking

Definition (Time Petri net)

The structure $Z=\left(P, T, F, V, m_{o}, I\right)$ is called a Time Petri net (TPN) iff:

- $S(Z):=\left(P, T, F, V, m_{0}\right)$ is a PN (skeleton of Z)
- $I: T \longrightarrow \mathbb{Q}_{0}^{+} \times\left(\mathbb{Q}_{0}^{+} \cup\{\infty\}\right)$ and $I_{1}(t) \leq I_{2}(t)$ for each $t \in T$, where $I(t)=\left(I_{1}(t), I_{2}(t)\right)$.

Definition (state changing)

Let $Z=\left(P, T, F, V, m_{o}, l\right)$ be a TPN,
$z=(m, h), z^{\prime}=\left(m^{\prime}, h^{\prime}\right)$ be two states.
Then

$$
z=(m, h) \text { changes into } z^{\prime}=\left(m^{\prime}, h^{\prime}\right) \text { by }
$$

Definitions Main Propery Applications Conclusion	Petri Net Time Petri Net

Time Petri Net
Time Petri Net

> Louchka Popova-Zeugmann TPN State Space Reduction Using DP and Time Paths

Example

$$
z_{0} \xrightarrow{1.3} \xrightarrow{1.0} \xrightarrow{t_{4}}\left(m_{3},\left(\begin{array}{c}
2.3 \\
\sharp \\
0.0 \\
\sharp
\end{array}\right)\right) \xrightarrow{2.0}\left(m_{4},\left(\begin{array}{c}
4.3 \\
\sharp \\
2.0 \\
\sharp
\end{array}\right)\right)
$$

Louchka Popova-Zeugmann TPN State Space Reduction Using DP and Time Paths
Example

$$
\begin{aligned}
& z_{0} \xrightarrow{1.3} \xrightarrow{1.0} \xrightarrow{t_{4}} \xrightarrow{2.0} \xrightarrow{t_{1}}\left(m_{5},\left(\begin{array}{c}
\sharp \\
0.0 \\
2.0 \\
\#
\end{array}\right)\right) \xrightarrow{t_{2}}\left(m_{6},\left(\begin{array}{c}
0.0 \\
\# \\
\# \\
\#
\end{array}\right)\right)
\end{aligned}
$$

Louchka Popova-Zeugmann TPN State Space Reduction Using DP and Time Paths
Definitions

Main Property
Applications
Conclusion
:---
Time Petri Net

Reachable state, Reachable marking, State space

Definition

- z is reachable state in Z if there ex. a feasible run $\sigma(\tau)$ and $z_{0} \xrightarrow{\sigma(\tau)} z$
- m is reachable marking in Z if there ex. a reachable state z in Z with $z=(m, h)$
- The set of all reachable states in Z is the state space of Z (denoted: $\operatorname{StSp}(Z)$).
transition sequence: $\sigma=\left(t_{1}, \cdots, t_{n}\right)$
- run: $\quad \sigma(\tau)=\left(\tau_{0}, t_{1}, \tau_{1}, \cdots, \tau_{n-1}, t_{n}, \tau_{n}\right)$
- feasible run: $z_{0} \xrightarrow{\tau_{0}} z_{0}^{*} \xrightarrow{t_{1}} z_{1} \xrightarrow{\tau_{1}} z_{1}^{*} \cdots \xrightarrow{t_{n}} z_{n} \xrightarrow{\tau_{n}} z_{n}^{*}$
- feasible transition sequence : σ is feasible if there ex. a feasible run $\sigma(\tau)$

Parametric Description of the State Space

Example

Let $Z=\left[P, T, F, V, m_{0}, I\right]$ be a TPN and $\sigma=\left(t_{1}, \cdots, t_{n}\right)$ be a transition sequence in Z.
$\delta(\sigma)=\left[m_{\sigma}, \Sigma_{\sigma}, B_{\sigma}\right]$ is the parametric description of σ, if

- $m_{0} \xrightarrow{\sigma} m_{\sigma}$
- $\Sigma_{\sigma}(t)$ is a parametrical t-marking
- B_{σ} is a set of conditions (a system of inequalities)

Obviously

- $z_{0} \xrightarrow{\sigma}\left(m_{\sigma}, \Sigma_{\sigma}\right)=: z_{\sigma}$,
- $\operatorname{StSp}(Z)=\bigcup_{\sigma} z_{\sigma}$.

$$
\begin{gathered}
\sigma=(e) \quad \Longrightarrow \\
\delta(\sigma)=C_{e}=\{(\underbrace{(0,1,1)}_{m_{\sigma}}, \underbrace{\left(x_{1}, \sharp, \sharp, x_{1}\right)}_{\Sigma_{\sigma}}) \mid \underbrace{0 \leq x_{1} \leq 3}_{B_{\sigma}}\}
\end{gathered}
$$

Louchka Popova-Zeugmann TPN State Space Reduction Using DP and Time Paths

```
Main Property State Space Reduction
    Applications Dynamic Programming
```


State Space Reduction

Theorem (1 - continuation)
$z_{0} \xrightarrow{\tau_{0}} \xrightarrow{t_{0}} \cdots \xrightarrow{\tau_{n}} \xrightarrow{t_{n}} z_{n}=\left(m_{n}, h_{n}\right), \tau_{i} \in \mathbb{R}_{0}^{+}$.
$z_{0} \xrightarrow{\tau_{0}^{*}} \xrightarrow{t_{0}} \cdots \xrightarrow{\tau_{n}^{*}} \xrightarrow{t_{n}} z_{n}^{*}=\left(m_{n}^{*}, h_{n}^{*}\right), \tau_{i}^{*} \in \mathbb{N}$.

1. For each $i, 0 \leq i \leq n$ the time τ_{i}^{*} is a natural number.
2. For each enabled transition t at marking $m_{n}\left(=m_{n}^{*}\right)$ it holds:
$2.1 h_{n}(t)^{*}=\left\lfloor h_{n}(t)\right\rfloor$.
$2.2 \sum_{i=1}^{n} \tau_{i}^{*}=\left\lfloor\sum_{i=1}^{n} \tau_{i}\right\rfloor$
3. For each transition $t \in T$ holds:
t is ready to fire in z_{n} iff t is ready to fire in $\left\lfloor z_{n}\right\rfloor$, too.

Theorem (1)
Let Z be a TPN and $\sigma=\left(t_{1}, \cdots, t_{n}\right)$ be a feasible transition sequence in Z, with a run $\sigma(\tau)$ as an execution of σ, i.e.

$$
z_{0} \xrightarrow{\tau_{0}} \xrightarrow{t_{0}} \cdots \xrightarrow{\tau_{n}} \xrightarrow{t_{n}} z_{n}=\left(m_{n}, h_{n}\right),
$$

and all $\tau_{i} \in \mathbb{R}_{0}^{+}$.
Then, there exists a further feasible run $\sigma\left(\tau^{*}\right)$ of σ with

$$
z_{0} \xrightarrow{\tau_{0}^{*}} \xrightarrow{t_{0}} \cdots \xrightarrow{\tau_{n}^{*}} \xrightarrow{t_{n}} z_{n}^{*}=\left(m_{n}^{*}, h_{n}^{*}\right) .
$$

such that

Definitions
Main Property
Applications
:---:
Dynamic Programming

State Space Reduction

Theorem (2 - similar to 1)
Let Z be a TPN and $\sigma=\left(t_{1}, \cdots, t_{n}\right)$ be a feasible transition sequence in Z, with a run $\sigma(\tau)$ as an execution of σ, i.e.

$$
z_{0} \xrightarrow{\tau_{0}} \xrightarrow{t_{0}} \cdots \xrightarrow{\tau_{n}} \xrightarrow{t_{n}} z_{n}=\left(m_{n}, h_{n}\right),
$$

and all $\tau_{i} \in \mathbb{R}_{0}^{+}$.
Then, there exists a further feasible run $\sigma\left(\tau^{*}\right)$ of σ with

$$
z_{0} \xrightarrow{\tau_{0}^{*}} \xrightarrow{t_{0}} \cdots \xrightarrow{\tau_{n}^{*}} \xrightarrow{t_{n}} z_{n}^{*}=\left(m_{n}^{*}, h_{n}^{*}\right) .
$$

such that

Theorem (2 - continuation)

1. For each $i, 0 \leq i \leq n$ the time τ_{i}^{*} is a natural number.
2. For each enabled transition t at marking $m_{n}\left(=m_{n}^{*}\right)$ it holds:
$2.1 h_{n}(t)^{*}=\left\lceil h_{n}(t)\right\rceil$.
$2.2 \sum_{i=1}^{n} \tau_{i}^{*}=\left\lceil\sum_{i=1}^{n} \tau_{i}\right\rceil$
3. For each transition $t \in T$ holds:
t is ready to fire in z_{n} it is ready to fire in $\left\lceil z_{n}\right\rceil$, too.

The theorem 1 solves the following problem :
Input: a TPN, a transition sequence $\sigma=\left(t_{1}, \ldots, t_{n}\right)$ and a sequence of $(n+1)$ real numbers,
$\left(\hat{\beta}\left(x_{0}\right), \hat{\beta}\left(x_{1}\right), \cdots, \hat{\beta}\left(x_{n}\right)\right)$ subject to a certain finite set VC of conditions (inequalities).

Output: a sequence of $(n+1)$ integers,
$\left(\beta^{*}\left(x_{0}\right), \beta^{*}\left(x_{1}\right), \cdots, \beta^{*}\left(x_{n}\right)\right)$ subject to $V C$.
The solving of the output is the problem P^{*} :
Problem \mathbf{P}^{*} : Compute a sequence of $(n+1)$ integers,

$$
\left(\beta^{*}\left(x_{0}\right), \beta^{*}\left(x_{1}\right), \cdots, \beta^{*}\left(x_{n}\right)\right) \text { subject to } V C^{* 1}
$$

The solution strategy for the problem P^{*} is a typical dynamic programming's one.

${ }^{1} V C^{*}$ is a certain finite superset of the set $V C$

Louchka Popova-Zeugmann TPN State Space Reduction Using DP and Time Paths

$$
\text { Louchka Popova-Zeugmann } \quad \text { TPN State Space Reduction Using DP and Time Paths }
$$

Main Property
Applications

Conclusion | State Space Reduction |
| :---: |
| Dynamic Programming |

State Space Reduction

Example (continuation)

Definitions
Main Property $\underset{\substack{\text { Main Property } \\ \text { Apations }}}{\text { and }}$ Applications
Conclusion

State Space Reduction

$$
\begin{aligned}
& \text { Example (continuation) } \\
& \text { The run } \sigma(\tau) \text { with } \\
& \sigma(\tau)= \\
& z_{0} \xrightarrow{0.7} \xrightarrow{t_{1}} \xrightarrow{0.0} \xrightarrow{t_{3}} \xrightarrow{\mathbf{0 . 4}} \xrightarrow{t_{4}} \xrightarrow{\mathbf{1 . 2}} \xrightarrow{t_{2}} \xrightarrow{\mathbf{0 . 5}} \xrightarrow{t_{3}} \xrightarrow{\mathbf{1 . 4}}\left(m,\left(\begin{array}{c}
1.9 \\
1.4 \\
1.4 \\
1.4 \\
4.2 \\
\#
\end{array}\right)\right) \\
& \text { is feasible. }
\end{aligned}
$$

```
Main Property
    Applications Dynamic Programming
```


State Space Reduction

Example (continuation)									
1	x_{0}	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	$\Sigma_{\sigma}\left(t_{1}\right)$	$\Sigma_{\sigma}\left(t_{2}\right)$	$\Sigma_{\sigma}\left(t_{5}\right)$
$\hat{\beta}=\beta_{0}$	0.7	0.0	0.4	1.2	0.5	1.4	1.9	1.4	4.2
β_{1}	0.7	0.0	0.4	1.2	0.5	1	1.5	1.0	3.8
β_{2}	0.7	0.0	0.4	1.2	0	1	1.0		3.3
β_{3}	0.7	0.0	0.4	1	0	1			3.1
β_{4}	0.7	0.0	1	1	0	1			3.7
β_{5}	0.7	0	1	1	0	1			3.7
β_{6}	1	0	1	1	0	1			4.0

> Louchka Popova-Zeugmann TPN State Space Reduction Using DP and Time Paths
Main Property
Applications

Conclusion | State Space Reduction |
| :---: |
| Dynamic Programming |

State Space Reduction

Example (continuation)									
II	x_{0}	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	$\Sigma_{\sigma}\left(t_{1}\right)$	$\Sigma_{\sigma}\left(t_{2}\right)$	$\Sigma_{\sigma}\left(t_{5}\right)$
$\hat{\beta}=\beta_{0}$	0.7	0.0	0.4	1.2	0.5	1.4	1.9	1.4	4.2
β_{1}	0.7	0.0	0.4	1.2	0.5	2	2.5	2.0	4.8
β_{2}	0.7	0.0	0.4	1.2	0	2	2.0		4.3
β_{3}	0.7	0.0	0.4	2	0	2			5.1
β_{4}	0.7	0.0	0	2	0	2			4.7
β_{5}	0.7	0	0	2	0	2			4.7
β_{6}	1	0	0	2	0	2			5.0

Example (continuation)

$$
\begin{aligned}
& \text { Hence, the runs } \\
& \sigma\left(\tau_{1}^{*}\right):=z_{0} \xrightarrow{\mathbf{1}} \xrightarrow{t_{1}} \xrightarrow{\mathbf{0}} \xrightarrow{t_{3}} \xrightarrow{\mathbf{1}} \xrightarrow{t_{4}} \xrightarrow{\mathbf{1}} \xrightarrow{t_{2}} \xrightarrow{\mathbf{0}} \xrightarrow{t_{3}} \xrightarrow{\mathbf{1}}\lfloor \\
& \sigma(\tau)=z_{0} \xrightarrow{0.7} \xrightarrow{t_{1}} \xrightarrow{0.0} \xrightarrow{t_{3}} \xrightarrow{0.4} \xrightarrow{t_{4}} \xrightarrow{1.2} \xrightarrow{t_{2}} \xrightarrow{0.5} \xrightarrow{t_{3}} \xrightarrow{1.4} z \\
& \sigma\left(\tau_{2}^{*}\right):=z_{0} \xrightarrow{\mathbf{1}} \xrightarrow{t_{1}} \xrightarrow[\mathbf{0}]{\longrightarrow} \xrightarrow{t_{3}} \xrightarrow{\mathbf{0}} \xrightarrow{t_{4}} \xrightarrow{\mathbf{2}} \xrightarrow{t_{2}} \xrightarrow{\mathbf{0}} \xrightarrow{t_{3}} \xrightarrow{\mathbf{2}}\lceil z\rceil
\end{aligned}
$$

$$
\text { are feasible in } Z \text {, too. }
$$

Dynamic programming
Where is
the Dynamic Programming
here?

Let us consider the tableau I again!

Input:

- The TPN Z_{2},
- the transition sequence $\sigma=\left(t_{1}, t_{3}, t_{4}, t_{2}, t_{3}\right)$
- the six $(6=n+1$, i.e. $n=5)$ elapses of time
$\hat{\beta}\left(x_{0}\right)=0.7, \hat{\beta}\left(x_{1}\right)=0.0, \hat{\beta}\left(x_{2}\right)=0.4$,
$\hat{\beta}\left(x_{3}\right)=1.2, \hat{\beta}\left(x_{4}\right)=0.5, \hat{\beta}\left(x_{5}\right)=1.4$,
which are real numbers and
- the run $\sigma(\hat{\beta})=\left(0.7, t_{1}, 0.0, t_{3}, 0.4, t_{4}, 1.2, t_{2}, 0.5, t_{3}, 1.4\right)$ is a feasible one in Z_{2}.

Dynamic programming \begin{tabular}{c|c|}
\(\substack{Definitions

Main Property

Applications

Conclusion}\) \& | State Space Reduction |
| :---: |
| Dynamic Programming |

\hline
\end{tabular}

Conclusion

g

Output:

- Six elapses of time $\beta^{*}\left(x_{0}\right), \beta^{*}\left(x_{1}\right), \cdots, \beta^{*}\left(x_{5}\right)$ which are integers,
- $\sigma\left(\beta^{*}\right)$ is a feasible run in Z_{2}.
- The set of transitions which are ready to fire after $\sigma(\hat{\beta})$ is the same as the set of transitions which are ready to fire after $\sigma\left(\beta^{*}\right)$.

```
= P*
```

Definitions
Main Property
Applications
Applications
Conclusion

```
State Space Reduction

Dynamic Programming
\[

\]
Dynamic Programming

\[
\Sigma_{\sigma}\left(t_{1}\right)=x_{4}+x_{5}, \quad \Sigma_{\sigma}\left(t_{2}\right)=\Sigma_{\sigma}\left(t_{3}\right)=\Sigma_{\sigma}\left(t_{4}\right)=x_{5}
\]
\[
\Sigma_{\sigma}\left(t_{5}\right)=x_{1}+x_{2}+x_{3}+x_{4}+x_{5}
\]

- The set of its critical states is the singleton \(S^{\circ}=\{5\}\).
- The set of its terminal states is the singleton \(S^{t}=\{0\}\).
- The set of non-terminal states is \(\mathrm{S}^{\prime \prime}=\mathrm{S} \backslash \mathrm{S}^{\mathrm{t}}=\{1,2, \ldots, 5\}\).
- The T-linker \(\mathrm{L}_{\mathrm{T}}\) has the form \(\mathrm{L}_{\mathrm{T}}\left(\mathrm{z}\left(\mathrm{s}^{\mathrm{O}}\right)\right)=\mathrm{z}^{\mathrm{O}}=\mathrm{z}\left(\mathrm{s}^{\mathrm{O}}\right)\).
- The transition function \(t\) is defined as
\[
\mathrm{t}(\mathrm{~s}):=\mathrm{s}-1, \quad \mathrm{~s} \in \mathrm{~S}^{\prime \prime}
\]
Dynamic Programming \begin{tabular}{c}
\begin{tabular}{c} 
Definitions \\
Applicationty \\
Conclusion
\end{tabular} \\
\begin{tabular}{c} 
State Space Reduction \\
Dynamic Programming
\end{tabular} \\
\hline
\end{tabular}

The time length of the run \(\sigma(\hat{\beta})\) is
\(I_{\sigma\left(\beta^{*}\right)}=\hat{\beta}\left(x_{0}\right)+\hat{\beta}\left(x_{1}\right)+\hat{\beta}\left(x_{2}\right)+\hat{\beta}\left(x_{3}\right)+\hat{\beta}\left(x_{4}\right)+\hat{\beta}\left(x_{5}\right)=4.2\)
In tableau I: The time length of the run \(\sigma\left(\beta^{*}\right)\) is \(I_{\sigma\left(\beta^{*}\right)}=4\)
In tableau II: The time length of the run \(\sigma\left(\beta^{*}\right)\) is \(I_{\sigma\left(\beta^{*}\right)}=5\)
i.e. \(I_{\sigma\left(\beta^{*}\right)}=4 \leq 4.2=I_{\sigma\left(\beta^{*}\right)}=4.2 \leq 5=I_{\sigma\left(\beta^{*}\right)}\)
\begin{tabular}{c} 
Main Property \\
Applications
\end{tabular} \begin{tabular}{c} 
State Space Reduction \\
Dynamic Programming
\end{tabular}

\section*{State Space Reduction}

\section*{Definition}

A state \(z=(m, h)\) in a TPN is an integer one iff for all enabled transitions \(t\) at \(m\) holds: \(h(t) \in \mathbb{N}\).

\section*{Example (State Space Reduction)}

- The linker \(L\) is clearly given by
\[
\begin{aligned}
\mathrm{z}(\mathrm{~s}) & =\mathrm{L}\left(\mathrm{~s},\left\{\left(\mathrm{~s}^{\prime}, \mathrm{z}\left(\mathrm{~s}^{\prime}\right)\right) \mid \mathrm{s}^{\prime} \in \mathrm{t}(\mathrm{~s})\right\}\right), \quad \forall \mathrm{s} \in \mathrm{~S}^{\prime \prime} \\
& =\mathrm{L}(\mathrm{~s}, \mathrm{z}(\mathrm{t}(\mathrm{~s}))) \\
& =\mathrm{L}(\mathrm{~s}, \mathrm{z}(\mathrm{~s}-1)):=\beta_{\mathrm{s}}
\end{aligned}
\]
State Space Reduction \begin{tabular}{c} 
Definitions \\
\begin{tabular}{c} 
Main Property \\
Applications \\
Conclusion
\end{tabular} \\
\begin{tabular}{c} 
State Space Reduction \\
Dynamic Programming
\end{tabular} \\
\hline
\end{tabular}

\section*{Corollary}
- Each feasible t-sequence \(\sigma\) in \(Z\) can be realized with an "integer" run.
- Each reachable marking in Z can be found using "integer" runs only.
- If \(z\) is reachable in \(Z\), then \(\lfloor z\rfloor\) and \(\lceil z\rceil\) are reachable in \(Z\), too.
- The length of the shortest and longest time path between two arbitrary p-markings are natural numbers.

> Louchka Popova-Zeugmann TPN State Space Reduction Using DP and Time Paths
\begin{tabular}{cc|c}
\begin{tabular}{c} 
Definitions \\
Main Property \\
Applications \\
Conclusion
\end{tabular} & \begin{tabular}{c} 
State Space Reduction \\
Dynamic Programming
\end{tabular} \\
&
\end{tabular}

\section*{State Space Reduction}

\section*{Theorem (3)}

Let \(Z\) be a FTPN.
The set of all reachable integer states in \(Z\) is finite
if and only if
the set of all reachable markings in \(Z\) is finite.
Remark: Theorem 3 can be generalized for all TPNs (applying a further reduction).
Reachability Graph \begin{tabular}{c} 
Definitions \\
\begin{tabular}{c} 
Main Property \\
Applications \\
Conclusion
\end{tabular}
\end{tabular} \begin{tabular}{c} 
Reachability Graph \\
Time Paths in bounded TPNs \\
\hline
\end{tabular}
\(\square\)

\section*{Reachability Graph}
```

Definition
Basis) $1 z_{0} \in R G(Z)$
Step)
Let z be in $R G(Z)$ already

1. for $i=1$ to $n \underline{d o}$
if $z \xrightarrow{t_{i}} z^{\prime}$ possible in Z then $z^{\prime} \in R G(Z)$ end
2. if $z \xrightarrow{1} z^{\prime}$ possible in Z then $z^{\prime} \in R G(Z)$
```
\(\Longrightarrow\) The reachability graph is a weighted directed graph.
\begin{tabular}{cl}
\begin{tabular}{c} 
Definitions \\
Main Property \\
Applications \\
Conclusion
\end{tabular} & \begin{tabular}{l} 
Reachability Graph \\
Time Paths in bounded TPNs
\end{tabular}
\end{tabular}

Example (The infinite TPN \(Z_{3}\) and its reachability graph \(\left.R G\left(Z_{3}\right)\right)\)


Example (The FTPN \(Z_{2}\) and its reachability graph(s) )

(9)

Louchka Popova-Zeugmann TPN State Space Reduction Using DP and Time Paths
\begin{tabular}{c|c}
\begin{tabular}{c} 
Definitions \\
Main Property \\
Applications \\
Conclusion
\end{tabular} & \begin{tabular}{l} 
Reachability Graph \\
Time Paths in bounded TPNs
\end{tabular} \\
&
\end{tabular}

Let \(Z=\left(P, T, F, V, I, m_{o}\right)\) be a bounded TPN. The following problems can be decided/computed with the knowledge of its RG, amongst others:

\section*{Result:}

Input: \(\quad z\) and \(z^{\prime}\) - two states (in \(Z\) ).
Output: - Is there a path between \(z\) and \(z^{\prime}\) in \(R G(Z)\) ?
- If yes, compute the path with the shortest time length.

Solution: By means of prevalent methods of the graph theory, e.g. Bellman-Ford algorithm (the running time is \(\mathcal{O}(|V| \cdot|E|)\) and \(R G(Z)=(V, E))\)
\begin{tabular}{cc|c|}
\begin{tabular}{c} 
Definitions \\
Main Property \\
Applications \\
Conclusion
\end{tabular} & \begin{tabular}{l} 
Reachability Graph \\
Time Paths in bounded TPNs
\end{tabular} \\
\hline
\end{tabular}

\section*{Result:}

Input: \(\quad m\) and \(m^{\prime}\) - two markings (in \(Z\) ).
Output: - Is there a path between \(m\) and \(m^{\prime}\) in \(R G(Z)\) ?
- If yes, compute the path with the shortest time length.

Solution: By means of prevalent methods of the graph theory, for computing all-pairs shortest paths.
The running time is polynomial, too.

\section*{Definition}

The longest path between two states (vertices in \(R G(Z)\) ) \(z\) and \(z^{\prime}\) is \(l p\left(z, z^{\prime}\right)\) with
\[
\operatorname{lp}\left(z, z^{\prime}\right):= \begin{cases}\infty & , \text { if a cycle is reachable starting on } z \\ & \text { before reaching } z^{\prime} \\ \max \sum_{\sigma(\tau)} \tau_{i} & , \text { if } z \xrightarrow{\sigma(\tau)} z^{\prime}\end{cases}
\]


\section*{Result:}

Input: \(\quad z\) and \(z^{\prime}\) - two states (in \(Z\) ).

Output: - Is there a path between \(z\) and \(z^{\prime}\) in \(R G(Z)\) ?
- If yes, compute the path with the longest time length.

Solution: By means of prevalent methods of the graph theory, e.g. Bellman-Ford algorithm (polyn. running time). or by computing all strongly connected components of \(R G(Z)\). (linear running time)

\section*{Result:}

Input: \(\quad m\) and \(m^{\prime}\) - two states (in \(Z\) )
Output: - Is there a path between \(z\) and \(z^{\prime}\) in \(R G(Z)\) ?
- If yes, compute the path with the longest time length.

Solution: By means of prevalent methods of the graph theory, e.g. Bellman-Ford algorithm.
or by computing all strongly connected components of \(R G(Z)\).

\section*{Conclusion}
- The State Space Reduction of a TPN is a nonoptimization truncated decision problem
- The minimal and the maximal time length of a path between two markings in a TPN is a natural number (if finite)
\[
\Longrightarrow
\]
it can be computed in polynomial/linear time (with res. to the RG)```

