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Petri Net

Definition (Petri Net)

The structure N = (P, T , F , V , m0) is a Petri Net (PN), iff

� P, T and F are finite sets,
P−set of places
T−set of transitions

}
set of vertices(nodes)

P ∩ T = ∅, P ∪ T �= ∅,
F – set of edges (arcs)

F ⊆ (P × T ) ∪ (T × P) and dom(F ) ∪ cod(F ) = P ∪ T

� V : F −→ N+ (weights of edges)

� m0 : P −→ N (initial marking)
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Example

� m0 = (0, 1, 1)
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Time Petri Net

Example

� m0 = (0, 1, 1) p-marking

� h0 = (�, 0, 0, 0) t-marking
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Time Petri Net

Definition (Time Petri net)

The structure Z = (P, T , F , V , mo , I ) is called a Time Petri net
(TPN) iff:

� S(Z ) := (P, T , F , V , mo) is a PN (skeleton of Z )

� I : T −→ Q+
0 × (Q+

0 ∪ {∞}) and
I1(t) ≤ I2(t) for each t ∈ T , where I (t) = (I1(t), I2(t)).
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state

Definition (state)

Let Z = (P, T , F , V , mo , I ) be a TPN and h : T −→ R+
0 ∪ {#}.

z = (m, h) is called a state in Z iff:

� m is a p-marking in Z .

� h is a t-marking in Z .
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Definition (state changing)

Let Z = (P, T , F , V , mo , I ) be a TPN,
z = (m, h), z ′ = (m′, h′) be two states.
Then

z = (m, h) changes into z ′ = (m′, h′) by

firing
a transition

/ ∖
time
elapsing
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Example

(m0,

⎛
⎜⎜⎝

0
�
�
0

⎞
⎟⎟⎠)

1.3−→ (m1,

⎛
⎜⎜⎝

1.3
�
�

1.3

⎞
⎟⎟⎠)
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z0
1.3−→ (m1,

⎛
⎜⎜⎝

1.3
�
�

1.3

⎞
⎟⎟⎠)

1.0−→ (m2,

⎛
⎜⎜⎝

2.3
�
�

2.3

⎞
⎟⎟⎠)
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z0
1.3−→ 1.0−→ (m2,

⎛
⎜⎜⎝

2.3
�
�

2.3

⎞
⎟⎟⎠)

t4−→ (m3,

⎛
⎜⎜⎝

2.3
�

0.0
�

⎞
⎟⎟⎠)
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Example

z0
1.3−→ 1.0−→ t4−→ (m3,

⎛
⎜⎜⎝

2.3
�

0.0
�

⎞
⎟⎟⎠)

2.0−→ (m4,

⎛
⎜⎜⎝

4.3
�

2.0
�

⎞
⎟⎟⎠)
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Example

z0
1.3−→ 1.0−→ t4−→ 2.0−→ (m4,

⎛
⎜⎜⎝

4.3
�

2.0
�

⎞
⎟⎟⎠)

t1−→ (m5,

⎛
⎜⎜⎝

�
0.0
2.0
�

⎞
⎟⎟⎠)
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Example

z0
1.3−→ 1.0−→ t4−→ 2.0−→ t1−→ (m5,

⎛
⎜⎜⎝

�
0.0
2.0
�

⎞
⎟⎟⎠)

t2−→ (m6,

⎛
⎜⎜⎝

0.0
�
�
�

⎞
⎟⎟⎠)
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Transition sequences, Runs

Definition

� transition sequence: σ = (t1, · · · , tn)

� run: σ(τ) = (τ0, t1, τ1, · · · , τn−1, tn, τn)

� feasible run: z0
τ0−→ z∗0

t1−→ z1
τ1−→ z∗1 · · · tn−→ zn

τn−→ z∗n
� feasible transition sequence : σ is feasible if there ex. a

feasible run σ(τ)
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Reachable state, Reachable marking, State space

Definition

� z is reachable state in Z if there ex. a feasible run σ(τ) and

z0
σ(τ)−→ z

� m is reachable marking in Z if there ex. a reachable state z
in Z with z = (m, h)

� The set of all reachable states in Z is the state space of Z
( denoted: StSp(Z ) ).
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Qualitative Properties

� static properties: being/having
� homogenous
� ordinary
� free choice
� extended simple
� conservative
� deadlocks, etc.

decidable without knowledge of the state space!
� dynamic properties: being/having

� bounded
� live
� reachable marking/state
� place- or transitions invariants, etc.

decidable, if at all (TPN is equiv. to TM!),
with implicit/explicit knowledge of the state space
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Quantitative Properties

each time proposition as having/computing

� (min-/max) time length of path

� path between two states/markings with min-/max time length

� set of all reachable markings within a period

� looking for efts and lfts leading to certain
qualitative/quantitative properties etc.

decidable, if at all, with implicit/explicit knowledge
of the state space
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Parametric Description of the State Space

Let Z = [P, T , F , V , m0, I ] be a TPN and σ = (t1, · · · , tn) be a
transition sequence in Z .
δ(σ) = [mσ, Σσ, Bσ] is the parametric description of σ, if

� m0
σ−→ mσ

� Σσ(t) is a parametrical t−marking

� Bσ is a set of conditions (a system of inequalities)

Obviously

� z0
σ−→ (mσ, Σσ) =: zσ,

� StSp(Z ) =
⋃
σ

zσ.
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σ = (e) =⇒

δ(σ) = Ce = {((0, 1, 1)︸ ︷︷ ︸
mσ

, (x1, �, �, x1)︸ ︷︷ ︸
Σσ

) | 0 ≤ x1 ≤ 3︸ ︷︷ ︸
Bσ

}
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Theorem (1)

Let Z be a TPN and σ = (t1, · · · , tn) be a feasible transition
sequence in Z, with a run σ(τ) as an execution of σ, i.e.

z0
τ0−→ t0−→ · · · τn−→ tn−→ zn = (mn, hn),

and all τi ∈ R+
0 .

Then, there exists a further feasible run σ(τ∗) of σ with

z0
τ∗
0−→ t0−→ · · · τ∗

n−→ tn−→ z∗n = (m∗
n, h

∗
n).

such that
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Theorem (1 – continuation)

z0
τ0−→ t0−→ · · · τn−→ tn−→ zn = (mn, hn), τi ∈ R+

0 .

z0
τ∗
0−→ t0−→ · · · τ∗

n−→ tn−→ z∗n = (m∗
n, h

∗
n), τ∗

i ∈ N.

1. For each i , 0 ≤ i ≤ n the time τ∗
i is a natural number.

2. For each enabled transition t at marking mn(= m∗
n) it holds:

2.1 hn(t)
∗ = �hn(t)�.

2.2
n∑

i=1

τ∗
i = �

n∑
i=1

τi�
3. For each transition t ∈ T holds:

t is ready to fire in zn iff t is ready to fire in �zn�, too.
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Theorem (2 – similar to 1)

Let Z be a TPN and σ = (t1, · · · , tn) be a feasible transition
sequence in Z, with a run σ(τ) as an execution of σ, i.e.

z0
τ0−→ t0−→ · · · τn−→ tn−→ zn = (mn, hn),

and all τi ∈ R+
0 .

Then, there exists a further feasible run σ(τ∗) of σ with

z0
τ∗
0−→ t0−→ · · · τ∗

n−→ tn−→ z∗n = (m∗
n, h

∗
n).

such that
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Theorem (2 – continuation)

1. For each i , 0 ≤ i ≤ n the time τ∗
i is a natural number.

2. For each enabled transition t at marking mn(= m∗
n) it holds:

2.1 hn(t)
∗ = hn(t)�.

2.2
n∑

i=1

τ∗
i = 

n∑
i=1

τi�
3. For each transition t ∈ T holds:

t is ready to fire in zn i t is ready to fire in zn�, too.
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The theorem 1 solves the following problem :

Input: a TPN, a transition sequence σ = (t1, . . . , tn) and
a sequence of (n + 1) real numbers,

(β̂(x0), β̂(x1), · · · , β̂(xn)) subject to a certain fi-
nite set VC of conditions (inequalities).

Output: a sequence of (n + 1) integers,
(β∗(x0), β

∗(x1), · · · , β∗(xn)) subject to VC .
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The solving of the output is the problem P∗:

Problem P∗: Compute a sequence of (n + 1) integers,
(β∗(x0), β

∗(x1), · · · , β∗(xn)) subject to VC ∗1.

The solution strategy for the problem P∗ is a typical dynamic
programming’s one.

1VC∗ is a certain finite superset of the set VC
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Example

σ = (t1 t3 t4 t2 t3)
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Example

σ = (t1t3t4t2t3)

σ(τ) := z0
0.7−→ t1−→ 0.0−→ t3−→ 0.4−→ t4−→ 1.2−→ t2−→ 0.5−→ t3−→ 1.4−→ z
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Example

σ = (t1t3t4t2t3)

mσ = (1, 2, 2, 1, 1)
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Example ( continuation )

Σσ =

⎛
⎜⎜⎜⎜⎜⎜⎝

x4 + x5

x5

x5

x5

x0 + x1 + x2 + x3 + x4 + x5

�

⎞
⎟⎟⎟⎟⎟⎟⎠ and
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Example ( continuation )

Bσ = {

0 ≤ x0, x0 ≤ 2, x0 + x1 + x2 ≤ 5
0 ≤ x1, x2 ≤ 2, x2 + x3 ≤ 5
1 ≤ x2, x3 ≤ 2, x0 + x1 + x2 + x3 ≤ 5
1 ≤ x3, x4 ≤ 2, x0 + x1 + x2 + x3 + x4 ≤ 5
0 ≤ x4, x5 ≤ 2, x0 + x1 + x2 + x3 + x4 + x5 ≤ 5
0 ≤ x5, x0 + x1 ≤ 5 x4 + x5 ≤ 2

}.
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Example ( continuation )

The run σ(τ) with
σ(τ) =

z0
0.7−→ t1−→ 0.0−→ t3−→ 0.4−→ t4−→ 1.2−→ t2−→ 0.5−→ t3−→ 1.4−→ (m,

⎛
⎜⎜⎜⎜⎜⎜⎝

1.9
1.4
1.4
1.4
4.2
�

⎞
⎟⎟⎟⎟⎟⎟⎠)

is feasible.
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Example ( continuation )

(m,

⎛
⎜⎜⎜⎜⎜⎜⎝

1.0

1.0

1.0

1.0

4.0

�

⎞
⎟⎟⎟⎟⎟⎟⎠)

︸ ︷︷ ︸
z0

σ(?)−→ �z�

(m,

⎛
⎜⎜⎜⎜⎜⎜⎝

1.9

1.4

1.4

1.4

4.2

�

⎞
⎟⎟⎟⎟⎟⎟⎠)

︸ ︷︷ ︸
z0

σ(β̂)−→ z

(m,

⎛
⎜⎜⎜⎜⎜⎜⎝

2.0

2.0

2.0

2.0

5.0

�

⎞
⎟⎟⎟⎟⎟⎟⎠)

︸ ︷︷ ︸
z0

σ(?)−→ �z�
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Example ( continuation )

I x0 x1 x2 x3 x4 x5 Σσ(t1) Σσ(t2) Σσ(t5)

β̂ = β0 0.7 0.0 0.4 1.2 0.5 1.4 1.9 1.4 4.2
β1 0.7 0.0 0.4 1.2 0.5 1 1.5 1.0 3.8
β2 0.7 0.0 0.4 1.2 0 1 1.0 3.3
β3 0.7 0.0 0.4 1 0 1 3.1
β4 0.7 0.0 1 1 0 1 3.7
β5 0.7 0 1 1 0 1 3.7
β6 1 0 1 1 0 1 4.0
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Example ( continuation )

II x0 x1 x2 x3 x4 x5 Σσ(t1) Σσ(t2) Σσ(t5)

β̂ = β0 0.7 0.0 0.4 1.2 0.5 1.4 1.9 1.4 4.2
β1 0.7 0.0 0.4 1.2 0.5 2 2.5 2.0 4.8
β2 0.7 0.0 0.4 1.2 0 2 2.0 4.3
β3 0.7 0.0 0.4 2 0 2 5.1
β4 0.7 0.0 0 2 0 2 4.7
β5 0.7 0 0 2 0 2 4.7
β6 1 0 0 2 0 2 5.0
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Example ( continuation )

Hence, the runs

σ(τ∗
1 ) := z0

1−→ t1−→ 0−→ t3−→ 1−→ t4−→ 1−→ t2−→ 0−→ t3−→ 1−→ �z�

σ(τ) = z0
0.7−→ t1−→ 0.0−→ t3−→ 0.4−→ t4−→ 1.2−→ t2−→ 0.5−→ t3−→ 1.4−→ z

σ(τ∗
2 ) := z0

1−→ t1−→ 0−→ t3−→ 0−→ t4−→ 2−→ t2−→ 0−→ t3−→ 2−→ z�

are feasible in Z , too.

Louchka Popova-Zeugmann TPN State Space Reduction Using DP and Time Paths



Definitions
Main Property

Applications
Conclusion

State Space Reduction
Dynamic Programming

Dynamic programming

Where is
the Dynamic Programming

here?
Let us consider the tableau I again!
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Input:

� The TPN Z2,

� the transition sequence σ = (t1, t3, t4, t2, t3)

� the six (6 = n + 1, i.e. n = 5) elapses of time
β̂(x0) = 0.7, β̂(x1) = 0.0, β̂(x2) = 0.4,
β̂(x3) = 1.2, β̂(x4) = 0.5, β̂(x5) = 1.4,
which are real numbers and

� the run σ(β̂) = (0.7, t1, 0.0, t3, 0.4, t4, 1.2, t2, 0.5, t3, 1.4)
is a feasible one in Z2.
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Output:

� Six elapses of time β∗(x0), β
∗(x1), · · · , β∗(x5) which are

integers,

� σ(β∗) is a feasible run in Z2.

� The set of transitions which are ready to fire after σ(β̂)
is the same as the set of transitions which are ready to
fire after σ(β∗).

= P∗
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I x0 x1 x2 x3 x4 x5 Σσ(t1) Σσ(t2) Σσ(t5)

β̂ = β0 0.7 0.0 0.4 1.2 0.5 1.4 1.9 1.4 4.2
β1 0.7 0.0 0.4 1.2 0.5 1
β2 0.7 0.0 0.4 1.2 0 1
β3 0.7 0.0 0.4 0 1
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I x0 x1 x2 x3 x4 x5 Σσ(t1) Σσ(t2) Σσ(t5)

β̂ = β0 0.7 0.0 0.4 1.2 0.5 1.4 1.9 1.4 4.2
β1 0.7 0.0 0.4 1.2 0.5 1
β2 0.7 0.0 0.4 1.2 0 1
β3 0.7 0.0 0.4 1 0 1
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I x0 x1 x2 x3 x4 x5 Σσ(t1) Σσ(t2) Σσ(t5)

β̂ = β0 0.7 0.0 0.4 1.2 0.5 1.4 1.9 1.4 4.2
β1 0.7 0.0 0.4 1.2 0.5 1 1.5 1.0 3.8
β2 0.7 0.0 0.4 1.2 0 1 1.0 3.3
β3 0.7 0.0 0.4 1 0 1 3.1
β4 0.7 0.0 1 1 0 1 3.7
β5 0.7 0 1 1 0 1 3.7

β∗ = β6 1 0 1 1 0 1 4.0

Σσ(t1) = x4 + x5, Σσ(t2) = Σσ(t3) = Σσ(t4) = x5

Σσ(t5) = x1 + x2 + x3 + x4 + x5
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� The set of its critical states is the singleton So = {5}.
� The set of its terminal states is the singleton St = {0}.
� The set of non-terminal states is S′′ = S \ St = {1, 2, . . . , 5}.
� The T-linker LT has the form LT(z(so)) = zo = z(so).

� The transition function t is defined as

t(s) := s - 1, s ∈ S′′.
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� The linker L is clearly given by

z(s) = L(s, {(s′,z(s′)) | s′ ∈ t(s)}), ∀s ∈ S′′

= L(s, z(t(s)))

= L(s,z(s-1)) := βs
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The time length of the run σ(β̂) is
lσ(β∗) = β̂(x0) + β̂(x1) + β̂(x2) + β̂(x3) + β̂(x4) + β̂(x5) = 4.2

In tableau I: The time length of the run σ(β∗) is lσ(β∗) = 4

In tableau II: The time length of the run σ(β∗) is lσ(β∗) = 5

i.e. lσ(β∗) = 4 ≤4.2 = lσ(β∗) = 4.2≤ 5 = lσ(β∗)
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Corollary

� Each feasible t-sequence σ in Z can be realized with an
”integer” run.

� Each reachable marking in Z can be found using ”integer”
runs only.

� If z is reachable in Z , then �z� and z� are reachable in Z ,
too.

� The length of the shortest and longest time path between two
arbitrary p-markings are natural numbers.
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Definition

A state z = (m, h) in a TPN is an integer one iff
for all enabled transitions t at m holds: h(t) ∈ N.

Example ( State Space Reduction)
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Theorem ( 3 )

Let Z be a FTPN.
The set of all reachable integer states in Z is finite

if and only if

the set of all reachable markings in Z is finite.

Remark: Theorem 3 can be generalized for all TPNs (applying a
further reduction).
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Reachability Graph

Definition

Basis) 1 z0 ∈ RG (Z )
Step)
Let z be in RG (Z ) already.
1. for i=1 to n do

if z
ti−→ z ′ possible in Z then z ′ ∈ RG (Z ) end

2. if z
1−→ z ′ possible in Z then z ′ ∈ RG (Z )

=⇒ The reachability graph is a weighted directed graph.

Louchka Popova-Zeugmann TPN State Space Reduction Using DP and Time Paths

Definitions
Main Property

Applications
Conclusion

Reachability Graph
Time Paths in bounded TPNs

Example (The FTPN Z2 and its reachability graph(s) )
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Example (The infinite TPN Z3 and its reachability graph
RG (Z3))
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Let Z = (P, T , F , V , I , mo) be a bounded TPN. The following
problems can be decided/computed with the knowledge of its RG,
amongst others:

Result:

Input: z and z ′ - two states (in Z ).

Output: – Is there a path between z and z ′ in RG (Z )?
– If yes, compute the path with the shortest time length.

Solution: By means of prevalent methods of the graph theory,
e.g. Bellman-Ford algorithm (the running time is
O(|V | · |E |) and RG (Z ) = (V , E ) )
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Result:

Input: m and m′ - two markings (in Z ).

Output: – Is there a path between m and m′ in RG (Z )?
– If yes, compute the path with the shortest time length.

Solution: By means of prevalent methods of the graph theory,
for computing all-pairs shortest paths.
The running time is polynomial, too.
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Reachability Graph
Time Paths in bounded TPNs

Definition

The longest path between two states (vertices in RG (Z )) z and
z ′ is lp(z , z ′) with

lp(z , z ′) :=

⎧⎪⎪⎨
⎪⎪⎩

∞ , if a cycle is reachable starting on z
before reaching z ′

max
∑
σ(τ)

τi , if z
σ(τ)−→ z ′
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Result:

Input: z and z ′ - two states (in Z ).

Output: – Is there a path between z and z ′ in RG (Z )?
– If yes, compute the path with the longest time length.

Solution: By means of prevalent methods of the graph theory,
e.g. Bellman-Ford algorithm (polyn. running time).
or by computing all strongly connected components
of RG (Z ). (linear running time)
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Result:

Input: m and m′ - two states (in Z ).

Output: – Is there a path between z and z ′ in RG (Z )?
– If yes, compute the path with the longest time length.

Solution: By means of prevalent methods of the graph theory,
e.g. Bellman-Ford algorithm.
or by computing all strongly connected components
of RG (Z ).
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Conclusion

� The State Space Reduction of a TPN is a nonoptimization
truncated decision problem

� The minimal and the maximal time length of a path between
two markings in a TPN is a natural number (if finite)

=⇒
it can be computed in polynomial/linear time (with res. to the
RG)
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Thank you!
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