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Welche zeitabhänginge Petri Netze sind die besten?

Und überall hingen, lagen und standen Uhren.
Da gab es auch Weltzeituhren in Kugelform,
welche die Zeit für jeden Zeitpunkt der Erde anzeigten
...
"Vielleicht", meinte Momo,
"braucht man dazu eben so eine Uhr."
Meister Hora schüttelte lächelnd den Kopf.
"Die Uhr allein würde niemand nützen.
Man muß sie auch lesen können."
Michael Ende, Momo
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Introduction Petri Nets

Statics: non initialized Petri Net

initialized Petri Net

finite two-coloured weighted directed graph

initial marking: m0 = (0,1,1)

L. Popova-Z. (HU-Berlin) Time and Petri Nets October 17, 2017 4 / 69



Introduction Petri Nets

Statics: non initialized Petri Net

initialized Petri Net

finite two-coloured weighted directed graph

initial marking: m0 = (0,1,1)

L. Popova-Z. (HU-Berlin) Time and Petri Nets October 17, 2017 4 / 69



Introduction Petri Nets

Statics:

non initialized Petri Net

initialized Petri Net

finite two-coloured weighted directed graphinitial marking: m0 = (0,1,1)

L. Popova-Z. (HU-Berlin) Time and Petri Nets October 17, 2017 4 / 69



Introduction Petri Nets

Statics:

non initialized Petri Net

initialized Petri Net

finite two-coloured weighted directed graph

initial marking: m0 = (0,1,1)

L. Popova-Z. (HU-Berlin) Time and Petri Nets October 17, 2017 4 / 69



Introduction Petri Nets

Dynamics: firing rule

m0 = (0, 1, 1)

m1 = (1, 1, 0)
...

L. Popova-Z. (HU-Berlin) Time and Petri Nets October 17, 2017 5 / 69



Introduction Petri Nets

Dynamics: firing rule

m0 = (0, 1, 1)

m1 = (1, 1, 0)
...

L. Popova-Z. (HU-Berlin) Time and Petri Nets October 17, 2017 5 / 69



Introduction Petri Nets

Dynamics: firing rule

m0 = (0, 1, 1)
m1 = (1, 1, 0)

...

L. Popova-Z. (HU-Berlin) Time and Petri Nets October 17, 2017 5 / 69



Introduction Time Petri Nets

Time Assignment

time dependent Petri Nets with time specification at

transitions
places
arcs
tokens

time dependent Petri Nets with
deterministic
stochastic

time assignment.
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Introduction Time Petri Nets

Statics:

Time

Petri Net (Skeleton)

m0 = (2,0,1)

p-marking

h0 = (],0,0,0) t-marking

h(t) is the time shown by the clock of t since the last enabling of t
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Introduction Time Petri Nets

State

The pair z = (m,h) is called a state in a TPN Z, iff:
m is a p-marking in Z .
h is a t-marking in Z.
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Introduction Time Petri Nets

Dynamics: firing rules

Let Z be a TPN and let z = (m,h), z ′ = (m′,h′) be two states.
Z changes from state z = (m,h) into the state z ′ = (m′,h′) by:

firing
a transition

/ ∖
time
elapsing

Notation: z t−→ z ′ z τ−→ z ′
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Introduction Timed Petri Nets

Timed Petri Net: An Informal Introduction

Statics:

Dynamics:Timed

Petri Net

firing mode: maximal step
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Introduction Petri Nets with Time Windows (tw-PN)

Petri Nets with Time Windows (tw-PN):
An Informal Introduction

P
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t t t
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4

A Petri Net with Time Windows P = (N , I)
is a Petri net N

with time intervals (windows) attached to the places.
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Introduction Petri Nets with Time Windows (tw-PN)

Initial Time Marking

P1

[2,6][0,1]

2
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1t t t
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P
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3
4

[1,3]

The initial time marking is given by

M0 = (

M(p1)︷︸︸︷
0 ;

M(p2)︷︸︸︷
ε ;

M(p3)︷︸︸︷
ε ;

M(p4)︷︸︸︷
ε )

the initial (timeless) marking by

mM0 = (1; 0; 0; 0) = m0
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Introduction Petri Nets with Time Windows (tw-PN)

Firing a transition t

P1

[2,6][0,1]

2

[0,2]

1t t t
3

t
4
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P

P
P2

3
4

[1,3]

“enough” tokens on pre-places of t
⇒ transition t enabled
all needed tokens “old enough”
⇒ transition t ready to fire

M0 = (0, ε, ε, ε)
⇒ t2 and t3: enabled and ready to fire
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Introduction Petri Nets with Time Windows (tw-PN)

Firing a transition t
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M0
t2−→ M1 = (ε,0,0, ε)

M1
1−→ M2 = (ε,1,1, ε)

M2
0.5−−→ M3 = (ε,0.5,1.5, ε)

A transition is not forced to fire!
The age is reset when the retention time is greater than
upper time bound.
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State Spaces

State Space of a Classic Petri Net

The state space is the set of all reachable markings starting in m0.

All reachable markings + firing relation = reachability graph of the
PN
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State Spaces

The reachability graph is finite
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State Spaces

The reachability graph is infinite
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State Spaces

The State Space of a Time Petri Net

The set of all reachable states is infinite and dense, in general.
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State Spaces

The State Space of a Timed Petri Net

The set of all reachable states is infinite and dense, in general.
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State Spaces

The State Space of a tw- Petri Net

The set of all reachable states is infinite and dense, in general.
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Petri Nets and Turing Machines

Remark 1:

The classic Petri Nets are not Turing-complete.

Remark 2:

Time Petri Nets are Turing-complete.

Remark 3:

Timed Petri Nets is are Turing-complete.

Remark 4:

The tw-PNs are not Turing-complete.
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Analysis Algorithms Time Petri Nets

Some Problems: The State Space

The set of all reachable states is dense.
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Analysis Algorithms Time Petri Nets

Some Further Problems: Reachability of p-markings

RZ is the set if all reachable p-markings in Z.
RS(Z) is the set of all reachable markings in the skeleton of Z ( the state space of the
skeleton of Z ).

L. Popova-Z. (HU-Berlin) Time and Petri Nets October 17, 2017 23 / 69



Analysis Algorithms Time Petri Nets

Some Further Problems: Reachability of p-markings

RZ is the set if all reachable p-markings in Z.
RS(Z) is the set of all reachable markings in the skeleton of Z ( the state space of the
skeleton of Z ).

L. Popova-Z. (HU-Berlin) Time and Petri Nets October 17, 2017 23 / 69



Analysis Algorithms Time Petri Nets

Some Further Problems: Reachability of p-markings

RZ is the set if all reachable p-markings in Z.
RS(Z) is the set of all reachable markings in the skeleton of Z ( the state space of the
skeleton of Z ).

L. Popova-Z. (HU-Berlin) Time and Petri Nets October 17, 2017 23 / 69



Analysis Algorithms Time Petri Nets

Some Further Problems: Reachability of p-markings

RZ is the set if all reachable p-markings in Z.
RS(Z) is the set of all reachable markings in the skeleton of Z ( the state space of the
skeleton of Z ).

L. Popova-Z. (HU-Berlin) Time and Petri Nets October 17, 2017 23 / 69



Analysis Algorithms Time Petri Nets

Some Further Problems: Reachability of p-markings

RZ is the set if all reachable p-markings in Z.
RS(Z) is the set of all reachable markings in the skeleton of Z ( the state space of the
skeleton of Z ).

L. Popova-Z. (HU-Berlin) Time and Petri Nets October 17, 2017 23 / 69



Analysis Algorithms Time Petri Nets

Parametric Run, Parametric State

Let Z =
(
P,T ,F ,V ,m0, I

)
be a TPN and σ = t1 · · · tn be a transition

sequence in Z.

(σ(x),Bσ) is a parametric run of σ and (zσ,Bσ) is a parametric state
in Z with zσ = (mσ,hσ), if

m0
σ−→ mσ

hσ(t) is a sum of variables, (hσ is a parametrical t−marking)
Bσ is a set of conditions (a system of inequalities)

Obviously
z0, σ ; (zσ,Bσ),
StSp(Z) =

⋃
(σ(x),Bσ)

{zσ(x)|x solves Bσ}︸ ︷︷ ︸
=:Kσ

.

L. Popova-Z. (HU-Berlin) Time and Petri Nets October 17, 2017 24 / 69



Analysis Algorithms Time Petri Nets

Parametric Run, Parametric State

Let Z =
(
P,T ,F ,V ,m0, I

)
be a TPN and σ = t1 · · · tn be a transition

sequence in Z.

(σ(x),Bσ) is a parametric run of σ and (zσ,Bσ) is a parametric state
in Z with zσ = (mσ,hσ), if

m0
σ−→ mσ

hσ(t) is a sum of variables, (hσ is a parametrical t−marking)
Bσ is a set of conditions (a system of inequalities)

Obviously
z0, σ ; (zσ,Bσ),

StSp(Z) =
⋃

(σ(x),Bσ)

{zσ(x)|x solves Bσ}︸ ︷︷ ︸
=:Kσ

.

L. Popova-Z. (HU-Berlin) Time and Petri Nets October 17, 2017 24 / 69



Analysis Algorithms Time Petri Nets

Parametric Run, Parametric State

Let Z =
(
P,T ,F ,V ,m0, I

)
be a TPN and σ = t1 · · · tn be a transition

sequence in Z.

(σ(x),Bσ) is a parametric run of σ and (zσ,Bσ) is a parametric state
in Z with zσ = (mσ,hσ), if

m0
σ−→ mσ

hσ(t) is a sum of variables, (hσ is a parametrical t−marking)
Bσ is a set of conditions (a system of inequalities)

Obviously
z0, σ ; (zσ,Bσ),
StSp(Z) =

⋃
(σ(x),Bσ)

{zσ(x)|x solves Bσ}︸ ︷︷ ︸
=:Kσ

.

L. Popova-Z. (HU-Berlin) Time and Petri Nets October 17, 2017 24 / 69



Analysis Algorithms Time Petri Nets

Runs
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Analysis Algorithms Time Petri Nets

Runs

σ = t1 t3 t4 t2 t3

σ(τ) := z0
0.7−→ t1−→ 0.0−→ t3−→ 0.4−→ t4−→ 1.2−→ t2−→ 0.5−→ t3−→ 1.4−→ z

τ = 0.7 0.0 0.4 1.2 0.5 1.4
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Analysis Algorithms Time Petri Nets

Example - Continuation

The run σ(τ) with

z0
0.7−→ t1−→ 0.0−→ t3−→ 0.4−→ t4−→ 1.2−→ t2−→ 0.5−→ t3−→ 1.4−→ (mσ,



1.9
1.4
1.4
1.4
4.2
]

)

is feasible.
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Analysis Algorithms Time Petri Nets

Example - Continuation

(mσ,



1.0
1.0
1.0
1.0
4.0
]

)

︸ ︷︷ ︸
z0

σ(?)−→ bzc

(mσ,



1.9
1.4
1.4
1.4
4.2
]

)

︸ ︷︷ ︸
z0

σ(τ)−→ z

(mσ,



2.0
2.0
2.0
2.0
5.0
]

)

︸ ︷︷ ︸
z0

σ(?)−→ dze
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Analysis Algorithms Time Petri Nets

Example - Continuation

The runs

σ(τ∗1 ) := z0
1−→ t1−→ 0−→ t3−→ 1−→ t4−→ 1−→ t2−→ 0−→ t3−→ 1−→ bzc

and

σ(τ) = z0
0.7−→ t1−→ 0.0−→ t3−→ 0.4−→ t4−→ 1.2−→ t2−→ 0.5−→ t3−→ 1.4−→ z

σ(τ∗2 ) := z0
1−→ t1−→ 0−→ t3−→ 0−→ t4−→ 2−→ t2−→ 0−→ t3−→ 2−→ dze

are also feasible in Z.
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Analysis Algorithms Time Petri Nets

Main Property

Theorem 1:

Let Z be a TPN and σ = t1 · · · tn) be a feasible transition
sequence in Z with a feasable run σ(τ) of σ

(
τ = τ0 . . . τn

)
i.e.

z0
τ0−→ t1−→ · · · tn−→ τn−→ zn = (mn,hn),

and all τi ∈ R+
0 .

Then, there exists a further feasible run σ(τ∗), τ∗ = τ∗0 . . . τ
∗
n of

σ with
z0

τ∗0−→ t1−→ · · · tn−→ τ∗n−→ z∗n = (m∗n,h
∗
n).

such that
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Analysis Algorithms Time Petri Nets

Main Property

Theorem 1 – Continuation:

z0
τ0−→ t1−→ · · · tn−→ τn−→ zn = (mn,hn), τi ∈ R+

0 .

z0
τ∗0−→ t1−→ · · · tn−→ τ∗n−→ z∗n = (m∗n,h∗n)

, τ∗i ∈ N.

1 For each i ,0 ≤ i ≤ n the time τ∗i is a natural number.
2 For each enabled transition t at marking mn(= m∗n) it holds:

1 h∗
n(t) = bhn(t)c.

2
n∑

i=1
τ∗i = b

n∑
i=1

τic

3 For each transition t ∈ T it holds:
t is ready to fire in zn iff t is also ready to fire in bznc.
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Analysis Algorithms Time Petri Nets

Main Property

Theorem 2:

Let Z be a TPN and σ = t1 · · · tn) be a feasible transition
sequence in Z, with feasable run σ(τ) of σ

(
τ = τ0 . . . τn

)
i.e.

z0
τ0−→ t1−→ · · · tn−→ τn−→ zn = (mn,hn),

and all τi ∈ R+
0 . Then, there exists a further feasible run σ(τ∗)

of σ with
z0

τ∗0−→ t1−→ · · · tn−→ τ∗n−→ z∗n = (m∗n,h
∗
n).

such that

L. Popova-Z. (HU-Berlin) Time and Petri Nets October 17, 2017 32 / 69



Analysis Algorithms Time Petri Nets

Main Property

Theorem 2 – Continuation:

1 For each i ,0 ≤ i ≤ n the time τ∗i is a natural number.
2 For each enabled transition t at marking mn(= m∗n) it holds:

1 hn(t)∗ = dhn(t)e.

2
n∑

i=1
τ∗i = d

n∑
i=1

τie

3 For each transition t ∈ T holds:
t is ready to fire in zn iff t is also ready to fire in dzne.
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Analysis Algorithms Time Petri Nets

Some Conclusions

Each feasible transitions sequence σ in Z can be realized with an
integer run.
Each reachable p-marking in Z can be reached using integer
runs only.
If z is reachable in Z, then bzc and dze are reachable in Z as well.
The length of the shortest and longest time path (if this is finite)
between two arbitrary p-markings are natural numbers.

A run σ(τ) = τ0 t1 τ1 . . . tn τn is an integer one, if τi ∈ N
for each i = 0 . . . n.
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Analysis Algorithms Time Petri Nets

Integer States

A state z = (m,h) is an integer one, if h(t) ∈ N for each in m
enabled transition t .

Theorem 3:

Let Z be a finite TPN, i.e. lft(t) 6=∞ for all t ∈ T .
The set of all reachable integer states in Z is finite

if and only if
the set of all reachable p−markings in Z is finite.

Remark:
Theorem 3 can be generalized for all TPNs (applying a further
reduction of the state space).
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Analysis Algorithms Time Petri Nets

Modified Rule

Let Z be an arbitrary TPN. The state change by time elapsing

can be slightly modified for each transition t with lft(t) =∞,

because to fire such a transition t

it is important if t is old enough to fire or not, i.e. if t has

been enabled last for eft(t) (or more) time units or t is

younger.

Thus, the time h(t) increases until eft(t). After that,

the clock of t remains in this position (although the time

is elapsing), unless t becomes disabled.
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Analysis Algorithms Time Petri Nets

Essential States

Theorem 4:
In an arbitrary TPN a p-marking is reachable using the non-
modified definition iff it is reachable using the modified one.

All reachable integer states in an arbitrary TPN, obtained by
using the modified definition, are called the essential states of
this net.

Theorem 5:
An arbitrary TPN is bounded iff the set of its essential states is
finite.
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Analysis Algorithms Time Petri Nets

Essential States

Remark:
The sets of all reachable integer states and the set of all
essential states are incomparable in an infinite TPN, in general.
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Analysis Algorithms Time Petri Nets

Dense Semantics vs. Discrete Semantics

Corollary :
A Time Petri nets with dense semantics has the same
behavior as the same net with discrete semantics w.r.t.
boundedness, liveness etc.
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Analysis Algorithms Time Petri Nets

Discrete Reduction of the State Space

The set of all reachable states

The set of all essential states
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Analysis Algorithms Time Petri Nets

(Reduced) Reachability Graph

The reachability graph is a weighted directed graph, including the time
explicit.
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Analysis Algorithms Time Petri Nets

Example: A finite TPN and its reachability graph
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Analysis Algorithms Time Petri Nets

Example: A non-finite TPN and its reachability graph
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Analysis Algorithms Time Petri Nets

Boundedness: TPN vs. Skeleton

A TPN Z is bounded if the set of all its reachable p-markings is
finite.

Theorem 6:
Let Z be a TPN and S(Z) its skeleton. Than it holds:

If S(Z) is bounded then Z is bounded as well.
If Z is bounded, then S(Z) can be bounded or unbounded,
i.e. the vice versa is not true.
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Analysis Algorithms Time Petri Nets

Reachability in finite TPN

Theorem:
Let the skeleton S(Z) of the TPN Z be bounded. Than it holds:

The reachability of each p-marking in Z is decidable.
The reachability of each rational state z = (m,h) (i.e. h(t)
is a rational number for each enabled transition t by m)
is decidable.
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Analysis Algorithms Time Petri Nets

Reachability: TPN vs. Skeleton

Theorem (speeded nets):

Let Z be a TPN, S(Z) its skeleton and eft(t) = 0 for all
transitions t in Z. Than a p-marking m is reachable in Z iff m is
reachable in S(Z).

Theorem (lazy nets):

Let Z be a TPN, S(Z) its skeleton and lft(t) =∞ for all
transitions t in Z. Than a p-marking m is reachable in Z iff m is
reachable in S(Z).
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Analysis Algorithms Time Petri Nets

Liveness: Definitions

Let Z be a TPN, t be a transition in Z and z, z ′ two states in Z.

t is called live in Z, if
∀z ∃z ′ ( z0

∗−→ z ∗−→ z ′ t−→ )

t is called dead in Z, if
∀z ( z0

∗−→ z t−→′ )

Z is called live or dead, resp., if all transitions in Z are live or
dead , resp.

Remark:

There is not a correlation between the liveness behaviors of a
TPN and its skeleton.
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Analysis Algorithms Time Petri Nets

Liveness: TPN vs. Skeleton

Z5 is live Z6 is not live
S(Z5) is not live S(Z6) is live
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Analysis Algorithms Time Petri Nets

Liveness: TPN vs. Skeleton

Theorem (speeded nets):

Let Z be a TPN, S(Z) its skeleton and eft(t) = 0 for all
transitions t in Z. Than Z is live iff S(Z) is live.

Theorem (lazy nets):

Let Z be a TPN, S(Z) its skeleton and lft(t) =∞ for all
transitions t in Z. Than Z is live iff S(Z) is live.
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Analysis Algorithms Time Petri Nets

Liveness: TPN vs. Skeleton

Theorem:

Let Z be a TPN , S(Z) its skeleton such that
S(Z) is a EFC-Net,
S(Z) is homogeneous,

and it holds:
Min(p) ≤Max(p) for each place p in Z and
lft(t) > 0 for each transition t in Z.

Than Z is live iff S(Z) is live.
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Analysis Algorithms Time Petri Nets

Liveness: TPN vs. Skeleton

Theorem:

Let Z be a TPN , S(Z) its skeleton such that
S(Z) is a AC-Net,
S(Z) is homogeneous,

and it holds:
Min(p) ≤Max(p) for each place p in Z and
lft(t) > 0 for each transition t in Z.

Than Z is live iff S(Z) is live.
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Analysis Algorithms Time Petri Nets

Some Decidable Quantitative Problems

Remark:

Using parametric states and/or the reachability graph (if it is
finite one) a lot of quantitative problems are solvable:

existence of a run,
minimal and maximal time length of a firing transition
sequence,
minimal and maximal distance between two essential states
and between two p-markings, etc.
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Analysis Algorithms Timed Petri Nets

State Space: Reachability graph
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Analysis Algorithms Timed Petri Nets

Reachability graph
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Reachability graph
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Analysis Algorithms Timed Petri Nets

State Equation in classic PN

Let N be a classic PN with
m1 and m2 two markings in N ,
σ = t1 . . . tn a firing sequence, and
m1

σ−→ m2.
Then it holds:

m2 = m1 + C · πσ, (state equation)

where C is the incidence matrix of N and πσ is the Parikh vector of σ.

In each PN N with initial marking m0 it holds:
If m 6=m0 + C ·πσ for each πσ then m is not reachable in N .
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Analysis Algorithms Timed Petri Nets

Extended Form of a Place Marking

m =


0 0 0 1 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0


p1
p2 extended form
p3 of the p-markings m
p4

after
0 1 2 3 4 5 6

time units
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Analysis Algorithms Timed Petri Nets

Time Dependent State Equation

Theorem

Let D be a Timed Petri Net, z(0) be the initial state in extended
form and

z(0) G1−→ ẑ(1) −→
1

z̃(1) G2−→ ẑ(2) −→
1
. . .

Gn−→ z(n)

be a firing sequence (Gi is a multiset for each i). Then, it holds:

m(n) = m(0) · Rn−1 + C ·Ψσ. State equation
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Analysis Algorithms Timed Petri Nets

z(0) G1−→ ẑ(1) −→
1

z̃(1) G2−→ ẑ(2) −→
1
. . .

Gn−→ z(n)

m(n) = m(0) · Rn−1 + C ·Ψσ. State equation

m(n) and m(0) are place markings in extended form
R is the progress matrix for D.
C is the incidence matrix of D in extended form
Ψσ is the Parikh matix of the sequence σ = G1 G2 . . .Gn
of multisets of transitions.
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Analysis Algorithms Timed Petri Nets

Timed Petri Nets with Uncertain Durations:
An Informal Introduction
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Analysis Algorithms Timed Petri Nets

Transformation Timed PN –> Time PN
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Analysis Algorithms Petri Nets with Time Windows (tw-PN)

Reachability Graph:
Natural Numbers vs. Real Numbers

P

[2,3]

1

[0,1]2

P

2

t1t 2

2
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Analysis Algorithms Petri Nets with Time Windows (tw-PN)

Reachability Graph:
Natural Numbers vs. Real Numbers

The integer reachability graph

There is
no “leaf” in the integer reachability graph!
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Consider σ(τ) = t1 1.5 t1 0.5 1.0 0.5 1.0
⇒ t2 is in M = (ε,3.0 1.5) in a t-DL
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Analysis Algorithms Petri Nets with Time Windows (tw-PN)

Theorem:

Let P be a PN with Time Windows and T be the set of its
transitions. Than the transition sequence

σ = t1 · · · tn

is a firing sequence in its skeleton S(P) iff there exists a
feasible run

σ(τ) = τ0t1τ1t2τ2 . . . τn−1tn

in P with τi ∈ R+
0 , for all i , 0 ≤ i ≤ n − 1.
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Analysis Algorithms Petri Nets with Time Windows (tw-PN)

Properties

Property “Reachability”

A marking M is reachable in a tP-PN P iff mM is reachable in
S(P).

Property “Liveness”

There is not a correlation between the liveness behaviors of a
tP-PN and its skeleton.
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Analysis Algorithms Petri Nets with Time Windows (tw-PN)

Time Gaps

1 P2

P4[0,1]

t1

tt 45 2tt3

[3,3] P3

P [2,3]

[2,3]

1 P2

P4[0,1]

t1

tt 45 2tt3

[3,3] P3

P [2,3]

[2,3]

σ(τα) = 3 t1 3 t2 3 t3

abcdefgh

σ(τβ) = 5 t1 2 t2 3 t3

abcdefgh

⇒ α = 9

abcdefghijklmnopqr

⇒ β = 10

abcdefghijklmnopqr

���
��XXXXXγ = 9.5?
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Conclusion

Given: Time dependent Petri Net

Aim: Analysis of the time dependent Petri Net

Problem: Infinite (dense) state space, TM-Completeness

Solution:
Parametrisation and discretisation of the state space.
Definition of a reachability graph.
Structurally restricted classes of time dependent Petri Nets.
Time dependent state equation.
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Conclusion

Softwate tools

INA: http://www2.informatik.hu-berlin.de/ starke/ina.html
tina: http://projects.laas.fr/tina//papers.php
charlie:
http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Charlie
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Conclusion

More about Time and Petri nets in
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Conclusion

Thank you!
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