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Timed Petri Nets Introduction

A formal definition of a Timed Petri Net can be found in the Appendix,
Part II.
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Timed Petri Nets Timed Petri Nets and Turing Machines

Timed Petri Nets and Counter Machines

Remark:

The power of the Timed Petri Nets is equal to the power of the
Turing Machines.

Idea:

Simulation of an arbitrary Counter Machine with a Timed Petri
Net.

Sufficiently: To simulate the command

l:DEC(i):r:s (zero-test).
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Timed Petri Nets Timed Petri Nets and Turing Machines

Zero-test

Zero-test ( l:DEC(i):r:s ) for Timed PN with firing mode maximal step
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Timed Petri Nets State Space

Reachability graph
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Timed Petri Nets State Equation

State Equation in classical PN

Let N be a classical PN with
m1 and m2 two markings in N ,
σ = t1 . . . tn a firing sequence, and
m1

σ−→ m2.
Then it holds:

m2 = m1 + C · πσ, (state equation)

where C is the incidence matrix of N and πσ is the Parikh vector of σ.

In each PN N with initial marking m0 it holds:
If m 6=m0 + C · πσ then m is not reachable in N .
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Timed Petri Nets State Equation

Extended Form of a Place Marking

m =


0 0 0 1 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0


p1
p2 extended form
p3 of the p-markings m
p4

after
0 1 2 3 4 5 6

time units
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Timed Petri Nets State Equation

Time Dependent State Equation

Theorem

Let D be a Timed Petri Net, z(0) be the initial state in extended
form and

z(0) G1−→ ẑ(1) −→
1

z̃(1) G2−→ ẑ(2) −→
1
. . .

Gn−→ z(n)

be a firing sequence (Gi is a multiset for each i). Then, it holds:

m(n) = m(0) · Rn−1 + C ·Ψσ. State equation
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Timed Petri Nets State Equation

z(0) G1−→ ẑ(1) −→
1

z̃(1) G2−→ ẑ(2) −→
1
. . .

Gn−→ z(n)

m(n) = m(0) · Rn−1 + C ·Ψσ. State equation

m(n) and m(0) are place markings in extended form
R is the progress matrix for D.
C is the incidence matrix of D in extended form
Ψσ is the Parikh matix of the sequence σ = G1 G2 . . .Gn
of multisets of transitions.
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Timed Petri Nets Time Petri Nets vs. Timed Petri Nets

Transformation Timed PN –> Time PN
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Timed Petri Nets Time Petri Nets vs. Timed Petri Nets

Transformation Timed PN –> Time PN

If in the Timed PN a firing duration is zero, then some problems
are possible:

It is possible that both
the set of the reachable p- markings and
the set of firing sequences

in the derived TPN are supersets of the corresponding sets in
the Timed PN.
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Timed Petri Nets Time Petri Nets vs. Timed Petri Nets

Sufficient Conditions for the Nonreachability of
p-markings

The p-marking m

does not satisfy a state equation.

does not satisfy the maximality condition for the firing rule.
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Further Variations of Time Dependent Petri Nets

Duration Interval Petri Nets
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Further Variations of Time Dependent Petri Nets

Transformation Timed PN –> Time PN
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Further Variations of Time Dependent Petri Nets

Petri Nets with Time Dependent Places

This class of time dependent Petri Nets is equivalent to the
classical Petri Nets (and therefore not equivalent to Turing
Machines).
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Further Variations of Time Dependent Petri Nets

Theorem: Let P be a PN with time dependent places and T be the
set of its transitions. Let

σ(τ) = τ0t1τ1t2τ2 . . . τn−1tn

be a feasable run in P with τi ∈ R+
0 , for all i , 0 ≤ i ≤ n − 1. Than there

exists a feasable run

σ(τ∗) = τ∗0 t1τ∗1 t2τ∗2 . . . τ
∗
n−1tn

in P and τ∗i ∈ N, for all i , 0 ≤ i ≤ n − 1.
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Further Variations of Time Dependent Petri Nets

Reachability Graph (Segment)
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Conclusion

Given: Time dependent Petri Net

Aim: Analysis of the time dependent Petri Net

Problem: Infinite (dense) state space, TM-Equivalence

Solution:
Parametrisation and discretisation of the state space.
Definition of an reachability graph.
Structurally restricted classes of time dependent Petri Nets.
Time dependent state equation.
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Conclusion

Thank you!
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Appendix

Timed Petri Net – Statics

Definition (Timed Petri Net)

The 6-tupel D = (P,T ,F ,V ,m0,D) is called Timed Petri Net (short:

DPN), iff

the 5- = (P,T ,F ,V ,m0) =: S(D) is a Petri Net

D : T −→ Q+
0 , called duration function.
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Appendix

Timed Petri Net – Dynamics

Definition (state)

A pair z = (m,u) is called a state in the DPN D iff

m is a marking in S(D) and

u : T −→ R+
0 with

∀t ( (t ∈ T ∧ t− ≤ m) −→ u(t) ≤ D(t) ).
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Appendix

Timed Petri Net – Dynamics

Definition (maximal step)

Let z = (m,u) be a state in the DPN D and let T be the set of its

transitions. Then, the set M is called a maximal set in z iff

1 M ⊆ T ,

2 ∀t ( t ∈ M −→ u(t) = 0 ),

3
∑
t∈M

t− ≤ m,

4 ∀t̂
(

( t̂ ∈ T ∧ t̂ 6∈ M ∧ t̂− ≤ m ∧ u(̂t ) = 0 ) −→ (
∑
t∈M

t−+ t̂−) 6≤ m
)
.
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Appendix

Timed Petri Net – Dynamics

Definition (firing)

Let z1 = (m1,u1) be a state in the DPN D and let M ⊆ T holds. Than

M can fire in z1 (denoted by: z1
M−→ ) iff M a maximal step in z1.

After firing of M the DPN D is in the state z2 = (m2,u2) (denoted by:

z1
M−→ z2 ) with:

(1) m2 := m1 −
∑
t∈M

t− +
∑

t∈M,
D(t)=0

t+,

(2) u2(t) :=

{
D(t) , if t ∈ M

u1(t) , else
.
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Appendix

Timed Petri Net – Dynamics

Definition (time elapsing)

Let z1 = (m1,u1) be a state in the DPN D. Then one time unit can

elapse in D (denoted by : z1
1−→) iff

∀t
(

(t ∈ T ∧ u1(t) = 0) −→ t− 6≤ m1
)
.

After the elapsing of one time unit the DPN D is in the state

z2 = (m2,u2) (denoted by: z1
1−→ z2 ) with:

1 m2 := m1 +
∑

t∈T ,
u1(t)=1

t+,

2 u2(t) :=

{
u1(t)− 1 , if u1(t) ≥ 1

0 , else
.
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Appendix

Definition (incidence matrix)

Let N = (P,T ,F ,V ,m0) be a Petri Net. The matrix

CN :=
(
− t−j (pi) + t+j (pi)

)
, i = 1 . . . |P|, j = 1 . . . |T |

is called the incidence matrix of N .
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Appendix

Definition (Parikh vektor)

Let N = (P,T ,F ,V ,m0) be a PN and σ = t1 . . . tn be a firing sequence

in N . The vector π ∈ N|T | with

π(t) := number of appearances of the transition t in the sequence σ

is called the Parikh vector of σ.
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Appendix

The Progress Matrix for D1

RD1 =



1 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0



RD1 is a d × d matrix
and

d = 7 =
max. duration in RD1︸ ︷︷ ︸

6

+1
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Appendix

The Incidence Matrix of D1 in Extended Form

CD1 =

(
0 0 0 1 0 0 0 −1 0 0 0 0 0 0 −1 0 0 0 0 0 0 1 0 0 0 0 0 0 −1 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0

)
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Appendix

The Bag-Matrix of a (global) step in a Timed PN

The matrix G(i) is the bag-matrix of the (global) firing step Gi iff

G(i) =

0BBBBB@
G(1)

G(2)

...

G(|T |)

1CCCCCA , G(s) = κ
(i)
s · Ed , where

κ
(i)
s is the number of appearance of ts in Gi and Ed is the unit matrix of the

dimension d .
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Appendix

The Bag-Matrix of a (global) step in a Timed PN

The Bag-Matrix of the (global) step G1 = {t2, t3} in D1

In D1 is d = 7 and |T | = 5.

In G1 is κ(1)
1 = κ

(1)
4 = κ

(1)
5 = 0 and κ(1)

2 = κ
(1)
3 = 1.

Finally,

G(1) =

0BBBBBBB@

0 · E7

1 · E7

1 · E7

0 · E7

0 · E7

1CCCCCCCA
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Appendix

The Parikh Matrix of a σ in a Timed PN

Ψ is the Parikh Matrix of the sequence σ = G1 G2 . . .Gn of (global) steps,

i.e.

z(0) G1−→ ẑ(1) −→
1

z̃(1) G2−→ ẑ(2) −→
1
. . .

Gn−→ ẑ(n),

iff:

Ψσ :=
nX

i=1

G(i) · Rn−i .
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