Time Petri Nets: Theory, Tools and Applications

Part II

Louchka Popova-Zeugmann

Humboldt-Universität zu Berlin Department of Computer Science Unter den Linden 6, 10099 Berlin, Germany

ATPN 2008, Xi'an, China

Louchka Popova-Zeugmann (HU-Berlin)

Time Petri nets, Part II

< ∃ >

Outline

1

Timed Petri Nets

- Introduction
- Timed Petri Nets and Turing Machines
- State Space
- State Equation
- Time Petri Nets vs. Timed Petri Nets
- 2 Further Variations of Time Dependent Petri Nets

3 Conclusion

Introduction

Timed Petri Net: An Informal Introduction

Statics:

Petri Net

Timed Petri Net: An Informal Introduction

Statics:

Timed Petri Net

Introduction

Timed Petri Net: An Informal Introduction

Dynamics:

firing mode: maximal step

Louchka Popova-Zeugmann (HU-Berlin)

Time Petri nets, Part II

Introduction

Timed Petri Net: An Informal Introduction

Dynamics:

firing mode: maximal step

Louchka Popova-Zeugmann (HU-Berlin)

Time Petri nets, Part II

Introduction

Timed Petri Net: An Informal Introduction

Dynamics:

firing mode: maximal step

Louchka Popova-Zeugmann (HU-Berlin)

Time Petri nets, Part II

Introduction

Timed Petri Net: An Informal Introduction

Dynamics:

firing mode: maximal step

Louchka Popova-Zeugmann (HU-Berlin)

Time Petri nets, Part II

A formal definition of a Timed Petri Net can be found in the Appendix, Part II.

Timed Petri Nets and Counter Machines

Remark:

The power of the Timed Petri Nets is equal to the power of the Turing Machines.

< □ > < 同 > < 三 >

Timed Petri Nets and Counter Machines

Remark:

The power of the Timed Petri Nets is equal to the power of the Turing Machines.

Idea:

Simulation of an arbitrary Counter Machine with a Timed Petri Net.

Sufficiently: To simulate the command

I:DEC(i):r:s (zero-test).

• □ > • □ > • □ > ·

Zero-test

Zero-test (I:DEC(i):r:s) for Timed PN with firing mode maximal step

ъ

Zero-test

Zero-test (I:DEC(i):r:s) for Timed PN with firing mode maximal step

< A

Louchka Popova-Zeugmann (HU-Berlin)

(日)

Louchka Popova-Zeugmann (HU-Berlin)

Time Petri nets, Part II

ATPN 2008 8/34

State Equation in classical PN

Let $\ensuremath{\mathcal{N}}$ be a classical PN with

- m_1 and m_2 two markings in \mathcal{N} ,
- $\sigma = t_1 \dots t_n$ a firing sequence, and
- $m_1 \xrightarrow{\sigma} m_2$.

Then it holds:

 $m_2 = m_1 + C \cdot \pi_\sigma$, (state equation)

where *C* is the incidence matrix of \mathcal{N} and π_{σ} is the Parikh vector of σ .

State Equation in classical PN

Let $\ensuremath{\mathcal{N}}$ be a classical PN with

- m_1 and m_2 two markings in \mathcal{N} ,
- $\sigma = t_1 \dots t_n$ a firing sequence, and
- $m_1 \xrightarrow{\sigma} m_2$.

Then it holds:

 $m_2 = m_1 + C \cdot \pi_\sigma$, (state equation)

where *C* is the incidence matrix of \mathcal{N} and π_{σ} is the Parikh vector of σ .

In each PN \mathcal{N} with initial marking m_0 it holds: If $m \neq m_0 + C \cdot \pi_\sigma$ then *m* is not reachable in \mathcal{N} .

Extended Form of a Place Marking

Louchka Popova-Zeugmann (HU-Berlin)

ヘロト 人間 とくほとくほ

Extended Form of a Place Marking

▲ 同 ▶ ▲ 三 ▶

Extended Form of a Place Marking

Time Dependent State Equation

Theorem

Let \mathcal{D} be a Timed Petri Net, $z^{(0)}$ be the initial state in extended form and

$$Z^{(0)} \xrightarrow{\mathfrak{G}_1} \hat{Z}^{(1)} \xrightarrow{1} \tilde{Z}^{(1)} \xrightarrow{\mathfrak{G}_2} \hat{Z}^{(2)} \xrightarrow{1} \cdots \xrightarrow{\mathfrak{G}_n} Z^{(n)}$$

be a firing sequence (\mathfrak{G}_i is a multiset for each *i*). Then, it holds:

$$m^{(n)} = m^{(0)} \cdot R^{n-1} + C \cdot \Psi_{\sigma}$$
. State equation

$$z^{(0)} \xrightarrow{\mathfrak{G}_{1}} \hat{z}^{(1)} \xrightarrow{1} \tilde{z}^{(1)} \xrightarrow{\mathfrak{G}_{2}} \hat{z}^{(2)} \xrightarrow{1} \cdots \xrightarrow{\mathfrak{G}_{n}} z^{(n)}$$
$$m^{(n)} = m^{(0)} \cdot R^{n-1} + C \cdot \Psi_{\sigma}. \quad \text{State equation}$$

m⁽ⁿ⁾ and *m*⁽⁰⁾ are place markings in extended form *R* is the progress matrix for *D*.

- C is the incidence matrix of \mathcal{D} in extended form
- Ψ_{σ} is the Parikh matix of the sequence $\sigma = \mathfrak{G}_1 \mathfrak{G}_2 \ldots \mathfrak{G}_n$ of multisets of transitions.

Time Petri Nets vs. Timed Petri Nets

Transformation Timed PN -> Time PN

イロト イポト イヨト イヨト

Time Petri Nets vs. Timed Petri Nets

Transformation Timed PN -> Time PN

If in the Timed PN a firing duration is zero, then some problems are possible:

-

< □ > < 同 > < 回 > <

Transformation Timed PN -> Time PN

If in the Timed PN a firing duration is zero, then some problems are possible:

It is possible that both

- the set of the reachable p- markings and
- the set of firing sequences

in the derived TPN are supersets of the corresponding sets in the Timed PN.

Sufficient Conditions for the Nonreachability of *p*-markings

The *p*-marking *m*

- does not satisfy a state equation.
- does not satisfy the maximality condition for the firing rule.

Further Variations of Time Dependent Petri Nets

Duration Interval Petri Nets

Louchka Popova-Zeugmann (HU-Berlin)

Time Petri nets, Part II

Transformation Timed PN -> Time PN

Further Variations of Time Dependent Petri Nets

Petri Nets with Time Dependent Places

Louchka Popova-Zeugmann (HU-Berlin)

Time Petri nets, Part II

<ロ> <同> <同> < 同> < 三> < 三>

Further Variations of Time Dependent Petri Nets

Petri Nets with Time Dependent Places

This class of time dependent Petri Nets is equivalent to the classical Petri Nets (and therefore not equivalent to Turing Machines).

• □ > • □ > • □ > ·

Theorem: Let \mathcal{P} be a PN with time dependent places and T be the set of its transitions. Let

$$\sigma(\tau) = \tau_0 t_1 \tau_1 t_2 \tau_2 \dots \tau_{n-1} t_n$$

be a feasable run in \mathcal{P} with $\tau_i \in \mathbb{R}^+_0$, for all $i, 0 \le i \le n - 1$. Than there exists a feasable run

$$\sigma(\tau^*) = \tau_0^* t_1 \tau_1^* t_2 \tau_2^* \dots \tau_{n-1}^* t_n$$

in \mathcal{P} and $\tau_i^* \in \mathbb{N}$, for all $i, 0 \leq i \leq n-1$.

Reachability Graph (Segment)

Louchka Popova-Zeugmann (HU-Berlin)

- Given: Time dependent Petri Net
- Aim: Analysis of the time dependent Petri Net
- Problem: Infinite (dense) state space, TM-Equivalence
- Solution:
 - Parametrisation and discretisation of the state space.
 - Definition of an reachability graph.
 - Structurally restricted classes of time dependent Petri Nets.
 - Time dependent state equation.

Conclusion

Thank you! ්

Louchka Popova-Zeugmann (HU-Berlin)

Time Petri nets, Part II

▶ < 글 ▶ 글 ∽ < < ATPN 2008 22 / 34

<ロ> <同> <同> < 同> < 同>

Conclusion

Thank you! ්

Louchka Popova-Zeugmann (HU-Berlin)

Time Petri nets, Part II

▶ < 글 > 글 ∽ < ○ ATPN 2008 22 / 34

イロト イポト イヨト イヨト

Conclusion

Thank you! ්

Louchka Popova-Zeugmann (HU-Berlin)

Time Petri nets, Part II

▶ < 글 ▶ 글 ∽ < < ATPN 2008 22 / 34

<ロ> <同> <同> < 同> < 同>

Timed Petri Net – Statics

Definition (Timed Petri Net)

The 6-tupel $D = (P, T, F, V, m_0, D)$ is called Timed Petri Net (short: DPN), iff

- the 5- = (P, T, F, V, m_0) =: S(D) is a Petri Net
- $D: T \longrightarrow \mathbb{Q}_0^+$, called duration function.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

Timed Petri Net – Dynamics

Definition (state)

A pair z = (m, u) is called a state in the DPN \mathcal{D} iff

• *m* is a marking in S(D) and

•
$$u: T \longrightarrow \mathbb{R}^+_0$$
 with

$$\forall t \ (\ (t \in T \land t^- \leq m) \longrightarrow u(t) \leq D(t) \).$$

イロト イポト イヨト イヨト

Timed Petri Net – Dynamics

Definition (maximal step)

Let z = (m, u) be a state in the DPN D and let T be the set of its transitions. Then, the set M is called a maximal set in z iff

1
$$M \subseteq T$$
,
2 $\forall t (t \in M \longrightarrow u(t) = 0)$,
3 $\sum_{t \in M} t^{-} \leq m$,
4 $\forall \hat{t} ((\hat{t} \in T \land \hat{t} \notin M \land \hat{t}^{-} \leq m \land u(\hat{t}) = 0) \longrightarrow (\sum_{t \in M} t^{-} + \hat{t}^{-}) \leq m)$.

Timed Petri Net – Dynamics

Definition (firing)

Let $z_1 = (m_1, u_1)$ be a state in the DPN \mathcal{D} and let $M \subseteq T$ holds. Than *M* can fire in z_1 (denoted by: $z_1 \xrightarrow{M}$) iff *M* a maximal step in z_1 . After firing of *M* the DPN \mathcal{D} is in the state $z_2 = (m_2, u_2)$ (denoted by: $z_1 \xrightarrow{M} z_2$) with: (1) $m_2 := m_1 - \sum_{t \in M} t^- + \sum_{\substack{t \in M, \\ D(t) = 0}} t^+,$ (2) $u_2(t) := \begin{cases} D(t) & \text{, if } t \in M \\ u_1(t) & \text{, else} \end{cases}$.

< ロ > < 同 > < 回 > < 回 > = 通

1

Timed Petri Net – Dynamics

Definition (time elapsing)

Let $z_1 = (m_1, u_1)$ be a state in the DPN \mathcal{D} . Then one time unit can elapse in \mathcal{D} (denoted by : $z_1 \xrightarrow{1}$) iff

$$\forall t ((t \in T \land u_1(t) = 0) \longrightarrow t^- \leq m_1).$$

After the elapsing of one time unit the DPN \mathcal{D} is in the state $z_2 = (m_2, u_2)$ (denoted by: $z_1 \xrightarrow{1} z_2$) with:

•
$$m_2 := m_1 + \sum_{\substack{t \in T, \\ u_1(t) = 1}} t^+,$$

• $u_2(t) := \begin{cases} u_1(t) - 1 & \text{, if } u_1(t) \ge 1 \\ 0 & \text{, else} \end{cases}$

.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Definition (incidence matrix)

Let $\mathcal{N} = (P, T, F, V, m_0)$ be a Petri Net. The matrix

$$C_{\mathcal{N}} := (-t_j^-(p_i) + t_j^+(p_i)), \quad i = 1 \dots |P|, \ j = 1 \dots |T|$$

is called the **incidence matrix** of \mathcal{N} .

Louchka Popova-Zeugmann (HU-Berlin)

イロト イポト イヨト イヨト

Definition (Parikh vektor)

Let $\mathcal{N} = (P, T, F, V, m_0)$ be a PN and $\sigma = t_1 \dots t_n$ be a firing sequence in \mathcal{N} . The vector $\pi \in \mathbb{N}^{|T|}$ with

 $\pi(t) :=$ number of appearances of the transition *t* in the sequence σ

is called the **Parikh vector** of σ .

The Progress Matrix for \mathcal{D}_1

イロト イポト イヨト イヨト

The Incidence Matrix of \mathcal{D}_1 in Extended Form

$\mathcal{C}_{\mathcal{D}_1} = 0$	/ 0001000 -1000000 -1000000 1000000 -1000000 \setminus
	-1000000 0010000 000000 0000000 0000000
	0000000 0010000 0000000 -2000000 0100000
	∖ 0000000 0000000 000000000 −1000000 0000000 /

Louchka Popova-Zeugmann (HU-Berlin)

Time Petri nets, Part II

The Bag-Matrix of a (global) step in a Timed PN

The matrix $G^{(i)}$ is the **bag-matrix** of the (global) firing step \mathfrak{G}_i iff

$$G^{(i)} = \begin{pmatrix} G_{(1)} \\ G_{(2)} \\ \vdots \\ G_{(|\mathcal{T}|)} \end{pmatrix}, \quad G_{(s)} = \kappa_s^{(i)} \cdot E_d, \text{ where }$$

 $\kappa_s^{(i)}$ is the number of appearance of t_s in \mathfrak{G}_i and E_d is the unit matrix of the dimension d.

イロト イポト イラト イラト

The Bag-Matrix of a (global) step in a Timed PN

The Bag-Matrix of the (global) step $\mathfrak{G}_1 = \{t_2, t_3\}$ in \mathcal{D}_1				
In \mathcal{D}_1 is $d = 7$ and $ T = 5$.				
In \mathfrak{G}_1 is $\kappa_1^{(1)} = \kappa_4^{(1)} = \kappa_5^{(1)} = 0$ and $\kappa_2^{(1)} = \kappa_3^{(1)} = 1$.				
Finally,				
	(0 · <i>E</i> 7)			
	1 · <i>E</i> ₇			
$G^{(1)} = 1$	1 · <i>E</i> ₇			
	0 · <i>E</i> ₇			
	$\left(0 \cdot E_7 \right)$			

-

The Parikh Matrix of a σ in a Timed PN

 Ψ is the **Parikh Matrix** of the sequence $\sigma = \mathfrak{G}_1 \mathfrak{G}_2 \ldots \mathfrak{G}_n$ of (global) steps, i.e.

$$Z^{(0)} \xrightarrow{\mathfrak{G}_1} \hat{Z}^{(1)} \xrightarrow{1} \tilde{Z}^{(1)} \xrightarrow{\mathfrak{G}_2} \hat{Z}^{(2)} \xrightarrow{1} \dots \xrightarrow{\mathfrak{G}_n} \hat{Z}^{(n)},$$

iff:

$$\Psi_{\sigma} := \sum_{i=1}^{n} \boldsymbol{G}^{(i)} \cdot \boldsymbol{R}^{n-i}.$$

イロト イポト イヨト イヨト